Straipsnyje nagrinėjama XIV a. logiko Jono Buridano modalinė logika, pastaraisiais metais sulaukianti vis didesnio viduramžių logikos tyrėjų dėmesio. Šiuolaikinėje analitinėje filosofijoje plačiai naudojama modalinė predikatų logika, paremta galimų pasaulių semantika, paskatino kelti klausimus apie Buridano modalumų teorijos ir šiuolaikinės simbolinės modalinės logikos santykį. Straipsnyje tiriama Buridano modalinės silogistikos pagrindą sudarančių teiginių semantinė interpretacija ir tarp šių teiginių galiojantys išvedimo ryšiai. Pirmiausia aptariami išvedimai tarp būtinumo, galimumo, atsitiktinumo ir neatsitiktinumo teiginių (su ir be frazės quod est), kurie yra logiškai taisyklingi pagal Buridano aprašytą semantiką. Pateikiama išsami diagraminė visų išvedimo sąryšių reprezentacija. Siekiant nustatyti, ar esama tinkamo būdo Buridano gaunamus rezultatus išreikšti predikatų logikoje su modalumais, aptariamos trys literatūroje aptinkamos Buridano teiginių formalizacijos versijos. Palyginus taisyklingus išvedimus tarp kvantifikuotų formulių ir tarp Buridano modalinių teiginių, galima tvirtinti, kad Buridano teiginių semantika ir galiojantys tiesioginiai išvedimai gali būti adekvačiai perteikiami predikatų logikos su aletiniais modalumais (sistemos T) priemonėmis.