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Abstract. This paper extensively studies the propagation of optical solitons within the framework
of (2 + 1)-dimensional generalized coupled nonlinear Schrödinger equations. The investigation
employs three worldly integration techniques: the enhanced direct algebraic method, the enhanced
Kudryashov method, and the new projective Riccati equation method. Through the application
of these methods, a broad spectrum of soliton solutions has been uncovered, including bright,
dark, singular, and straddled solitons. Additionally, this study reveals solutions characterized by
Jacobi and Weierstrass elliptic functions, enriching the understanding of the dynamics underpinning
optical solitons in complex systems. The diversity of the soliton solutions obtained demonstrates the
versatility and efficacy of the employed integration techniques and contributes significantly to the
theoretical and practical knowledge of nonlinear optical systems.

Keywords: optical solitons, generalized coupled nonlinear Schrödinger equations, enhanced direct
algebraic method, enhanced Kudryashov method, new projective Riccati equation method.

1 Introduction

Optical solitons are fundamental to advancing nonlinear optical systems and have be-
come a focal point of scientific research due to their unique characteristics and potential
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applications [14,27]. These solitary wave packets, remarkable for their ability to maintain
their shape over long distances, play a crucial role in transmitting information through
optical fibers. Their stability and self-reinforcing nature make them ideal for optical com-
munication and fiber optics technology applications, where data integrity and efficiency
are paramount. Unlike traditional waveforms that may dissipate and lose information
during transmission, solitons preserve their form and speed, making them highly effective
for long-range data transfer. This property enhances the capacity and reliability of com-
munication networks and enables higher data rates and more robust signal integrity against
noise and physical impairments in optical channels. The study of optical solitons opens
new avenues for technological innovations and enhances our understanding of nonlinear
phenomena in optical systems [8,15,21,23]. Furthermore, exploring the dynamics of these
solitons has implications across various fields, including telecommunications, medical
imaging, and even quantum computing, as they allow for novel ways to manipulate
light that can lead to breakthroughs in signal processing and transmission technology. As
research continues to delve deeper into the behavior and interactions of optical solitons,
we can expect to see transformative advancements in how information is transmitted,
processed, and utilized in an increasingly data-driven world. Ultimately, the ongoing
exploration of these fascinating wave phenomena represents a critical intersection of the-
oretical inquiry and practical application, promising to reshape the landscape of modern
optical technologies [1, 17, 22, 25, 30, 31].

The nonlinear Schrödinger equation (NLSE) is a fundamental equation that plays
a pivotal role in various fields of physics, including optics, quantum mechanics, and
wave dynamics. Different types of analytical methods were introduced in literature to
find exact solutions of differential equations with real-world applications [13, 19, 20].
The NLSE has been the subject of extensive research with various methods employed
to explore its solutions. Techniques such as the modified simple equation method [7],
Kudryashov method [24], the new Kudryashov method [29] improved modified Sardar
subequation method [16], Sine-Gordon expansion method [18], generalized projective
Riccati equation method [2], and Lie symmetry analysis [10–12] have been pivotal in un-
covering a diverse range of soliton solutions. Moreover, Hashemi in [9] introduced a novel
technique base on the variable coefficient third-degree generalized Abel equation method
for solving the stochastic Shrödinger–Hirota equation. These methodologies have enabled
researchers to systematically analyze and categorize solitons, shedding light on their
properties and behaviors in nonlinear optical systems. The field has witnessed significant
advancements through these worldly integration techniques, enriching our theoretical and
practical understanding of optical solitons. This body of work demonstrates the versatility
and efficacy of these methods. It underscores the continued importance of exploring the
NLSE to advance optical soliton theory and its applications in emerging technologies
[5, 26].

Recently, the (2 + 1)-dimensional generalized coupled NLSEs, which will extract
more abundant physical phenomena, described below [28]:

iUt + a(Uxx + Uyy) + 2
(
b|U2|+ c|V 2|+ dUV ∗ + d∗U∗V

)
U = 0

iVt + a(Vxx + Vyy) + 2
(
b|U2|+ c|V 2|+ dUV ∗ + d∗U∗V

)
V = 0.

(1)
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The functions U and V in this equation represent the envelopes of two circularly polarized
waves, expressed in terms of x, y, and t. The parameter a represents group velocity
dispersion, while b and c are real constants that account for self-phase modulation and
cross-phase modulation, respectively. Additionally, d is a complex constant that reflects
the effects of four-wave mixing, and the symbol “∗” signifies a complex conjugate. In
this study, the coupled NLSEs with cross-spatial dispersion are first reported using three
distinct techniques: the enhanced direct algebraic method, the enhanced Kudryashov’s,
and the projective Riccati equations methods. These techniques can provide different
forms of solitons, including bright solitons, dark solitons, singular solitons, and straddled
solitons, along with other different types of solutions involving the Jacobi and Weierstrass
elliptic function solutions.

Assume that

U(x, y, t) = Q1(η)e
iφ(x,y,t), V (x, y, t) = Q2(η)e

iφ(x,y,t).

In the expressions η = k(x+y−νt) and φ(x, y, t) = −$1x−$2y+ωt+θ0, where v, ω,
κ, and θ0 represent velocity, frequency, wave number, and phase constants, respectively,
let us utilize these transformations to decompose the system into the ensuing real and
imaginary systems. The real parts are as follows:

Q1

(
a
(
$2

1 +$2
2

)
− 2cQ2

2 + ω
)
− 2ak2Q′′1 − 2bQ3

1 − 2(d+ d∗)Q2Q
2
1 = 0,

Q2

(
a
(
$2

1 +$2
2

)
− 2bQ2

1 + ω
)
− 2ak2Q′′2 − 2cQ3

2 − 2(d+ d∗)Q1Q
2
2 = 0.

While the imaginary parts are

Q′1
(
2a($1 +$2) + v

)
= 0, Q′2

(
2a($1 +$2) + v

)
= 0.

After substituting each imaginary part into its corresponding real part and applying the
transformation Q2 = µQ1, the system of real parts simplifies to the identical equation,
namely,

− 2ak2Q′′1 +Q1

(
a
(
$2

1 +$2
2

)
+ ω

)
− 2Q3

1(b+ c+ d+ d∗). (2)

When the homogeneous balance implemented between Q′′1 and Q3
1 in Eq. (2), it implies

N = 1.

2 Overview of the integration algorithms

Suppose that we have a nonlinear evolution equation in the form

F (U,Ut, Ux, Uy, Uxx, Uyy, Uxt, Uyt, . . . ) = 0 (3)

with U(X) = U(x, y, t). Use the following traveling wave transformation:

U(X) = Q1(η), η = k(x+ y − νt), k 6= 0. (4)

Here v symbolizes the speed of the wave. Consequently, Eq. (4) can be converted into the
subsequent nonlinear ordinary differential equation

z(Q1, Q1
′, Q1

′′, Q1
′′′, . . . ) = 0. (5)
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2.1 The enhanced direct algebraic method

The enhanced direct algebraic technique possesses the capability to derive several forms
of closed-form exact solutions, encompassing bright, dark, single, and straddled solitons,
as well as diverse solutions such as Jacobi and Weierstrass elliptic function solutions [4].
Nonetheless, the diversity of its solutions might lose certain qualities if the governing
model fails to restore either a bright or dark soliton.

Step 1. Let us imagine that the solution to Eq. (5) can be represented as

Q1(η) = α0 +

N∑
i=1

[
αiθ(η)

i + βiθ(η)
−i], (6)

where

θ′(η)2 =

4∑
l=0

τ1θ(η)
l. (7)

Furthermore, τl, l = 0, . . . , 4, represent constants with the condition that τ4 6= 0. Eq. (7)
presents various solutions of diverse natures as documented in [4].

Case 1. If τ0 = τ1 = τ3 = 0, we get bell-shaped soliton with τ2 > 0, τ4 < 0 and
singular soliton with τ2 > 0, τ4 > 0:

θ(η) =

√
−τ2
τ4

sech
[√
τ2η
]
, τ2 > 0, τ4 < 0,

θ(η) =

√
τ2
τ4

csch
[√
τ2η
]
, τ2 > 0, τ4 > 0.

Case 2. For τ0 = τ22 /(4τ4), τ1 = τ3 = 0, we obtain kink-shaped and singular solitons
for τ2 < 0, τ4 > 0:

θ(η) =

√
− τ2
2τ4

tanh

[√
−τ2
2
η

]
, τ2 < 0, τ4 > 0,

θ(η) =

√
− τ2
2τ4

coth

[√
−τ2
2
η

]
, τ2 < 0, τ4 > 0.

Case 3. For τ1 = τ3 = 0, we have Jacobi elliptic doubly periodic type (JEDPT)
solution for various choices of τ0 as follows:

θ(η)±

√
− m2τ2
(2m2 − 1)τ4

cn

(√
τ2

(2m2 − 1)
η
∣∣∣ m), τ0 =

m2(1−m2)τ22
(2m2 − 1)2τ4

,

θ(η)±

√
− m2τ2
(2−m2)τ4

dn

(√
τ2

(2−m2)
η
∣∣∣ m), τ0 =

(1−m2)τ22
(2−m2)2τ4

,

θ(η)±

√
− m2τ2
(m2 + 1)τ4

sn

(√
− τ2
(m2 + 1)

η
∣∣∣ m), τ0 =

m2τ22
(m2 + 1)2τ4

.
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Case 4. If we set τ1 = τ3 = 0, we obtain Weierstrass elliptic doubly periodic type
solutions

θ(η) =
3℘′(η; g2, g3)√

τ4[6℘(η; g2, g3) + τ2]
, τ4 > 0,

θ(η) =

√
τ0[6℘(η; g2, g3) + τ2]

3℘′(η; g2, g3)
, τ0 > 0,

where g2 = τ22 /12 + τ0τ4 and g3 = (τ2/216)(36τ0τ4 − τ22 ).
Case 5. When τ0 = τ1 = 0, we obtain straddled soliton solutions, where τ2 > 0,

outlined as

θ(η) =
−τ2 sech2[ 12

√
τ2η]

±2√τ2τ4 tanh[ 12
√
τ2η] + τ3

, τ4 > 0,

θ(η) =
τ2 csch

2[ 12
√
τ2η]

±2√τ2τ4 coth[ 12
√
τ2η] + τ3

, τ4 > 0,

θ(η) =
−τ2τ3 sech2[ 12

√
τ2η]

τ23 − τ2τ4(1− tanh[ 12
√
τ2η])2

, τ3 6= 0,

θ(η) =
τ2τ3 csch

2[ 12
√
τ2η]

τ23 − τ2τ4(1− coth[ 12
√
τ2η])2

, τ3 6= 0.

Step 2. Determine the balance number N in Eqs. (6) and (5).
Step 3. By inserting Eqs. (6) and (7) into Eq. (5), we generate a polynomial denoted as

θ(η). This polynomial manipulation entails grouping terms with comparable powers and
equating the resulting expression to zero. This process leads to an overdetermined set of
algebraic equations, solvable using Mathematica to ascertain the unidentified parameters
in Eqs. (4) and (6). Consequently, we attain the precise solutions for Eq. (3).

2.2 The projective Riccati equations method

The projective Riccati equations method is a powerful and reliable approach for extracting
straddled solitons, which are hybrids of various soliton types, such as bright-dark, bright-
singular, and dark-singular solitons [6]. This versatility aligns well with the phenomena
associated with both bright and dark solitons.

Step 1. Let us say that the answer to Eq. (5) can be formulated as

Q1(η) = α0 +

N∑
i=1

θ(η)i−1
[
αiθ(η) + βiφ(η)

]
,

where θ(η) and φ(η) satisfy

θ′(η) = −θ(η)φ(η), φ′(η) = 1− φ2(η)− rθ(η), (8)

φ2(η) = 1− 2rθ(η) +R(r)θ2(η), (9)

where r 6= 0, and α0, αi, and βi, i = 0, 1, 2, . . . , N , are constants.
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Step 2. The solutions to Eq. (8) are outlined as follows [6].
Case 1. R(r) = 0.

θ(η) =
1

2r
sech2

[
η

2

]
and φ(η) = tanh

[
η

2

]
or

θ(η) = − 1

2r
csch2

[
η

2

]
and φ(η) = coth

[
η

2

]
.

Case 2. R(r) = (24/25)r2.

θ(η) =
1

r

5 sech[η]

5 sech[η]± 1
and φ(η) =

tanh[η]

1± 5 sech[η]
.

Case 3. R(r) = (5/9)r2.

θ(η) =
1

r

3 sech[η]

3 sech[η]± 2
and φ(η) =

2

2 coth[η]± 3 csch[η]
.

Case 4. R(r) = r2 − 1.

θ(η) =
4 sech[η]

3 tanh[η] + 4r sech[η] + 5
and φ(η) =

5 tanh[η] + 3

3 tanh[η] + 4r sech[η] + 5

or

θ(η) =
sech[η]

r sech[η] + 1
and φ(η) =

tanh[η]

r sech[η] + 1
.

Case 5. R(r) = r2 + 1.

θ(η) =
csch[η]

r csch[η] + 1
and φ(η) =

coth[η]

r csch[η] + 1
.

2.3 The enhanced Kudryashov method

The enhanced Kudryashov method is the most simple and robust method to recover the
significant solitons, including the bright, dark, and singular solitons; it is applicable to all
nonlinear phenomena [3].

Step 1. Suppose that the solution of Eq. (5) can be expressed in the form

Q1(η) = α0 +

N∑
i=1

[
αiθ(η)

i + βi
θ′(η)

θ(η)i

]
, θ′2(η) = θ2(η)

(
1− χθ2(η)

)
, (10)

where α0, χ, αi, βi, i = 1, 2, . . . , N , are constants.
Step 2. Eq. (10) gives the soliton waves

θ(η) =
4d

4d2eη + χe−η
, d 6= 0. (11)
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Step 3. When we substitute Eq. (10) into Eq. (5), together with Eq. (10), we obtain
the necessary constants for Eqs. (4) and (10). Afterwards, by incorporating the acquired
parametric limitations into Eqs. (10) and (11), we arrive at straddled solitons, which can
be simplified into bright, dark, or singular solitons.

3 Soliton solutions

3.1 The enhanced direct algebraic method

Balancing Q′′1 and Q3
1 in Eq. (2) implies N = 1, and hence,

Q1(η) = α0 + α1θ(η) +
β1
θ(η)

. (12)

Replace Eq. (12), together with Eq. (7), in Eq. (2). This substitution results in a poly-
nomial denoted as θ(η). When dealing with polynomials, the method includes grouping
terms with comparable powers and equating the resultant expression to zero. This process
leads to the following set of algebraic equations:

aα0

(
$2

1 +$2
2

)
− β1

(
ak2τ3 + 12α0α1(b+ c+ d+ d∗)

)
− aα1k

2τ1 + α0ω − 2α3
0(b+ c+ d+ d∗) = 0,

aβ1
(
$2

1 +$2
2 − 2k2τ2

)
− 6α2

0β1(b+ c+ d+ d∗)

− 6α1β
2
1(b+ c+ d+ d∗) + β1ω = 0,

aα1

(
$2

1 +$2
2 − 2k2τ2

)
+ α1ω − 6α2

1β1(b+ c+ d+ d∗)

− 6α1α
2
0(b+ c+ d+ d∗) = 0,

−4aβ1k2τ0 − 2β3
1(b+ c+ d+ d∗) = 0,

−3aβ1k2τ1 − 6α0β
2
1(b+ c+ d+ d∗) = 0,

−3aα1k
2τ3 − 6α0α

2
1(b+ c+ d+ d∗) = 0,

−2α1

(
2ak2τ4 + α2

1(b+ c+ d+ d∗)
)
= 0.

These equations can be tackled with Mathematica to unveil the unidentified parameters in
Eqs. (4) and (12). Consequently, we obtain the exact solutions for Eq. (1).

From now we assume that

V (X) = µU(X).

Case 1. If we set τ0 = τ1 = τ3 = 0,

α0 = β1 = 0, α1 = ± i
√
2aτ4k√

b+ c+ d+ d∗
, τ2 =

a$2
1 + a$2

2 + ω

2ak2
,

U(X) = ±

√
a$2

1 + a$2
2 + ω

k(b+ c+ d+ d∗)
sech

[√
a$2

1 + a$2
2 + ω

2a
(x+ y − νt)

]
× ei(−$1x−$2y+ωt+θ0), (13)
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U(X) = ±

√
−a$2

1 − a$2
2 − ω

k(b+ c+ d+ d∗)
csch

[√
a$2

1 + a$2
2 + ω

2a
(x+ y − νt)

]
× ei(−$1x−$2y+ωt+θ0). (14)

Solutions (13) and (14) are a bright and singular solitons with a$2
1 + a$2

2 + ω > 0
and 2a > 0.

Case 2. We set τ0 = τ22 /(4τ4), τ1 = τ3 = 0.
Result 1.

α0 = β1 = 0, α1 = ± ik
√
2aτ4√

b+ c+ d+ d∗
, τ2 =

a($2
1 +$2

2) + ω

2ak2
,

U(X) = ±

√
a($2

1 +$2
2) + ω

2(b+ c+ d+ d∗)
tanh

[√
−a($2

1 +$2
2)− ω

4a
(x+ y − νt)

]
× ei(−$1x−$2y+ωt+θ0), (15)

U(X) = ±

√
a($2

1 +$2
2) + ω

2(b+ c+ d+ d∗)
coth

[√
−a($2

1 +$2
2)− ω

4a
(x+ y − νt)

]
× ei(−$1x−$2y+ωt+θ0). (16)

Solutions (15) and (16) are dark and singular solitons with a($2
1 +$2

2) + ω < 0.
Result 2.

α0 = α1 = 0, β1 = ± i(a($2
1 +$2

2) + ω)

2
√
2ak2τ4(b+ c+ d+ d∗)

,

τ2 =
a($2

1 +$2
2) + ω

2ak2
,

U(X) = ±

√
(a($2

1 +$2
2) + ω)

2(b+ c+ d+ d∗)
coth

[√
−a($2

1 +$2
2)− ω

4a
(x+ y − νt)

]
× ei(−$1x−$2y+ωt+θ0), (17)

U(X) = ±

√
(a($2

1 +$2
2) + ω)

2(b+ c+ d+ d∗)
tanh

[√
−a($2

1 +$2
2)− ω

4a
(x+ y − νt)

]
× ei(−$1x−$2y+ωt+θ0). (18)

Solutions (17) and (18) are singular and dark solitons with a($2
1 +$2

2) + ω < 0.
Result 3.

α0 = 0, α1 = ∓ ik
√
2aτ4√

b+ c+ d+ d∗
,

β1 = ± i
√
a(kτ2)√

2τ4(b+ c+ d+ d∗)
, τ2 =

a($2
1 +$2

2) + ω

8ak2
,
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U(X) = ∓

√
a($2

1 +$2
2) + ω

8(b+ c+ d+ d∗)

[
tanh

[√
−a($2

1 +$2
2)− ω

16a
(x+ y − νt)

]

− coth

[√
−a($2

1 +$2
2)− ω

16a
(x+ y − νt)

]]
× ei(−$1x−$2y+ωt+θ0), (19)

U(X) = ∓

√
a($2

1 +$2
2) + ω

8(b+ c+ d+ d∗)

[
coth

[√
−a($2

1 +$2
2)− ω

16a
(x+ y − νt)

]

− tanh

[√
−a($2

1 +$2
2)− ω

16a
(x+ y − νt)

]]
× ei(−$1x−$2y+ωt+θ0). (20)

Solutions (19) and (20) are straddled dark-singular solitons with a($2
1 +$2

2) + ω < 0.

Case 3.1. We set τ1 = τ3 = 0, τ0 = m2(1−m2)τ22 /((2m
2 − 1)2τ4).

Result 1.

α0 = β1 = 0, α1 = ± ik
√
2aτ4√

b+ c+ d+ d∗
, τ2 =

a$2
1 + a$2

2 + ω

2ak2
,

U(X) =

√
m2(a$2

1 + a$2
2 + ω)

(2m2 − 1)(b+ c+ d+ d∗)
cn

(√
a$2

1 + a$2
2 + ω

2a(2m2 − 1)
(x+ y − νt)

∣∣∣ m)
× ei(−$1x−$2y+ωt+θ0). (21)

For m = 1, we get

U(X) =

√
(a$2

1 + a$2
2 + ω)

(b+ c+ d+ d∗)
sech

(√
a$2

1 + a$2
2 + ω

2a
(x+ y − νt)

)
× ei(−$1x−$2y+ωt+θ0). (22)

Solutions (21) and (22) are JEDPT and a bright soliton solutions with a$2
1 + a$2

2 +
ω > 0 and a > 0.

Result 2.

α0 = α1 = 0, β1 = ±
kmτ2

√
2a(m2 − 1)

(1− 2m2)
√
τ4(b+ c+ d+ d∗)

,

τ2 =
a$2

1 + a$2
2 + ω

2ak2
,

U(X) =

√
(a$2

1 + a$2
2 + ω)(m2 − 1)

(2m2 − 1)(b+ c+ d+ d∗)
nc

(√
a$2

1 + a$2
2 + ω

2a(2m2 − 1)
(x+ y − νt)

∣∣∣ m)
× ei(−$1x−$2y+ωt+θ0). (23)
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For m = 0, we get

U(X) =

√
(a$2

1 + a$2
2 + ω)

(b+ c+ d+ d∗)
sec

(√
−a$

2
1 + a$2

2 + ω

2a
(x+ y − νt)

)
× ei(−$1x−$2y+ωt+θ0). (24)

Solutions (23) and (24) are JEDPT and a singular periodic with a$2
1 + a$2

2 +ω < 0 and
a > 0.

Case 3.2. We set τ1 = τ3 = 0, τ0 = (1−m2)τ22 /((2−m2)2τ4).
Result 1.

α0 = β1 = 0, α1 = ± ik
√
2aτ4√

b+ c+ d+ d∗
, τ2 =

a$2
1 + a$2

2 + ω

2ak2
,

U(X) =

√
m2(a$2

1 + a$2
2 + ω)

(2−m2)(b+ c+ d+ d∗)
dn

(√
a$2

1 + a$2
2 + ω

2a(2−m2)
(x+ y − νt)

∣∣∣ m)
× ei(−$1x−$2y+ωt+θ0). (25)

For m = 1, we get

U(X) =

√
(a$2

1 + a$2
2 + ω)

(b+ c+ d+ d∗)
sech

(√
a$2

1 + a$2
2 + ω

2a
(x+ y − νt)

)
ei(−$1x−$2y+ωt+θ0). (26)

Solutions (25) and (26) are JEDPT and a bright soliton solutions with a$2
1+a$

2
2+ω > 0

and a > 0.
Result 2.

α0 = α1 = 0,

β1 = ±
kτ2
√
2a(m2 − 1)

(m2 − 2)
√
τ4(b+ c+ d+ d∗)

, τ2 =
a$2

1 + a$2
2 + ω

2ak2
,

U(X) =

√
(a$2

1 + a$2
2 + ω)(m2 − 1)

m2(2−m2)(b+ c+ d+ d∗)
nd

(√
a$2

1 + a$2
2 + ω

2a(2−m2)
(x+ y − νt)

∣∣∣ m)
× ei(−$1x−$2y+ωt+θ0). (27)

Solution (27) is JEDPT with a$2
1 + a$2

2 + ω > 0 and a > 0.
Case 3.3. We set τ1 = τ3 = 0, τ0 = m2τ22 /((m

2 + 1)2τ4).
Result 1.

α0 = β1 = 0, α1 = ± ik
√
2aτ4√

b+ c+ d+ d∗
, τ2 =

a$2
1 + a$2

2 + ω

2ak2
,
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U(X) =

√
m2(a$2

1 + a$2
2 + ω)

(m2 + 1)(b+ c+ d+ d∗)
sn

(√
−a$

2
1 + a$2

2 + ω

2a(m2 + 1)
(x+ y − νt)

∣∣∣ m)
× ei(−$1x−$2y+ωt+θ0). (28)

For m = 1, we get

U(X) =

√
(a$2

1 + a$2
2 + ω)

2(b+ c+ d+ d∗)
tanh

(√
−a$

2
1 + a$2

2 + ω

4a
(x+ y − νt)

)
× ei(−$1x−$2y+ωt+θ0). (29)

Solutions (28) and (29) are JEDPT and a dark soliton solutions with a$2
1 +a$

2
2 +ω < 0

and a > 0

Result 2.
α0 = α1 = 0,

β1 = ± i
√
2akmτ2

(1 +m2)
√
τ4(b+ c+ d+ d∗)

, τ2 =
a$2

1 + a$2
2 + ω

2ak2
,

U(X) =

√
a$2

1 + a$2
2 + ω

(1 +m2)(b+ c+ d+ d∗)
ns

(√
−a$

2
1 + a$2

2 + ω

2a(m2 + 1)
(x+ y − νt)

∣∣∣ m)
× ei(−$1x−$2y+ωt+θ0). (30)

For m = 1, we get

U(X) =

√
(a$2

1 + a$2
2 + ω)

2(b+ c+ d+ d∗)
coth

(√
−a$

2
1 + a$2

2 + ω

4a
(x+ y − νt)

)
× ei(−$1x−$2y+ωt+θ0). (31)

For m = 0, we get

U(X) =

√
a$2

1 + a$2
2 + ω

(b+ c+ d+ d∗)
csc

(√
−a$

2
1 + a$2

2 + ω

2a
(x+ y − νt)

)
× ei(−$1x−$2y+ωt+θ0). (32)

Solutions (30), (31), and (32) are JEDPT, a singular soliton, and a singular periodic
solutions with a$2

1 + a$2
2 + ω < 0 and a > 0.

Case 4. We set τ1 = τ3 = 0.
Result 1.

α0 = β1 = 0, α1 = ± ik
√
2aτ4√

b+ c+ d+ d∗
, τ2 =

a($2
1 +$2

2) + ω

2ak2
,
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U(X) = ±k
√

−2a
b+ c+ d+ d∗

[
3℘′(k(x+ y − νt); g2, g3)

[6℘(k(x+ y − νt); g2, g3) + a($2
1+$

2
2)+ω

2ak2 ]

]
× ei(−$1x−$2y+ωt+θ0),

U(X) = ±k
√

−2aτ4τ0
b+ c+ d+ d∗

[
[6℘(k(x+ y − νt); g2, g3) + a($2

1+$
2
2)+ω

2ak2 ]

3℘′(k(x+ y − νt); g2, g3)

]
× ei(−$1x−$2y+ωt+θ0), τ0 > 0,

where

g2 =
(a($2

1 +$2
2) + ω)2

48a2k4
+ τ0τ4

and

g3 =
a($2

1 +$2
2) + ω

432ak2

(
36τ0τ4 −

(
a($2

1 +$2
2) + ω

2ak2

)2)
.

Result 2.

α0 = α1 = 0, β1 = ± ik
√
2aτ0√

b+ c+ d+ d∗
, τ2 =

a($2
1 +$2

2) + ω

2ak2
,

U(X) = ±k
√

−2aτ0τ4
b+ c+ d+ d∗

[
[6℘(k(x+ y − νt); g2, g3) + a($2

1+$
2
2)+ω

2ak2 ]

3℘′(k(x+ y − νt); g2, g3)

]
× ei(−$1x−$2y+ωt+θ0), τ4 > 0,

U(X) = ±k
√

−2a
b+ c+ d+ d∗

[
3℘′(k(x+ y − νt); g2, g3)

[6℘(k(x+ y − νt); g2, g3) + a($2
1+$

2
2)+ω

2ak2 ]

]
× ei(−$1x−$2y+ωt+θ0),

where

g2 =
(a($2

1 +$2
2) + ω)2

48a2k4
+ τ0τ4

and

g3 =
a($2

1 +$2
2) + ω

432ak2

(
36τ0τ4 −

(
a($2

1 +$2
2) + ω

2ak2

)2)
.

Case 5. We set τ0 = τ1 = 0.

α0 = −
α1
√
τ2

2
√
τ4
, α1 = ± k

√
−2aτ4√

b+ c+ d+ d∗
, β1 = 0,

τ2 = −a($
2
1 +$2

2) + ω

ak2
, τ3 =

2
√
τ4(−(a($2

1 +$2
2) + ω))√

ak
,
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U(X) = ∓

√
a($2

1 +$2
2) + ω

2(b+ c+ d+ d∗)

×
[
1 +

2 sech2[ 12

√
−a($

2
1+$

2
2)+ω

a (x+ y − νt)]

±2 tanh[12
√
−a($

2
1+$

2
2)+ω

a (x+ y − νt)] + 2
√
τ4(−(a($2

1+$
2
2)+ω))√

ak

]
× ei(−$1x−$2y+ωt+θ0), τ4 > 0, (33)

U(X) = ∓

√
a($2

1 +$2
2) + ω

2(b+ c+ d+ d∗)

×
[
1−

2 csch2[ 12

√
−a($

2
1+$

2
2)+ω

a (x+ y − νt)]

±2 coth[ 12

√
−a($

2
1+$

2
2)+ω

a (x+ y − νt)] + 2
√
τ4(−(a($2

1+$
2
2)+ω))√

ak

]
× ei(−$1x−$2y+ωt+θ0), τ4 > 0, (34)

U(X) = ∓
√
(a($2

1 +$2
2) + ω)√

2(b+ c+ d+ d∗)

×
[
1−

4 sech2[ 12

√
−a($

2
1+$

2
2)+ω

a (x+ y − νt)]

−4 + (1− tanh[ 12

√
−a($

2
1+$

2
2)+ω

a (x+ y − νt)])2

]
× ei(−$1x−$2y+ωt+θ0), (35)

U(X) = ∓
√
(a($2

1 +$2
2) + ω)√

2(b+ c+ d+ d∗)

×
[
1−

4 csch2[ 12

√
−a($

2
1+$

2
2)+ω

a (x+ y − νt)]

−4 + (1− coth[ 12

√
−a($

2
1+$

2
2)+ω

a (x+ y − νt)])2

]
× ei(−$1x−$2y+ωt+θ0). (36)

Solutions (33), (35) are a straddled bright-dark solitons, and (34), (36) are a straddled
singular-singular solitons with a($2

1 +$2
2) + ω < 0, a > 0.

3.2 The projective Riccati equations method

Balancing Q′′1 and Q3
1 in Eq. (2) implies N = 1. Therefore

Q1(η) = α0 + α1θ(η) + β1φ(η), (37)

where α0, α1, and β1 are constants to be determined such that α1 6= 0 or β1 6= 0.
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Introducing the solution (37), which meets the requirements (8), (9), into Eq. (2), we
obtain a series of nonlinear equations as follows:

aα0

(
$2

1 +$2
2

)
+ α0ω − 6α0β

2
1(b+ c+ d+ d∗)− 2α3

0(b+ c+ d+ d∗) = 0,

6aα1k
2r − 6α0α

2
1(b+ c+ d+ d∗) + 12α1β

2
1r(b+ c+ d+ d∗)

− 6α0β
2
1R(r)(b+ c+ d+ d∗) = 0,

−4aα1k
2R(r)− 2α3

1(b+ c+ d+ d∗)− 6α1β
2
1R(r)(b+ c+ d+ d∗) = 0,

aβ1$
2
1 + aβ1$

2
2 − 6α2

0β1(b+ c+ d+ d∗)− 2β3
1(b+ c+ d+ d∗) + β1ω = 0,

2aβ1k
2r − 12α0α1β1(b+ c+ d+ d∗) + 4β3

1r(b+ c+ d+ d∗) = 0,

−4aβ1k2R(r)− 6α2
1β1(b+ c+ d+ d∗)− 2β3

1R(r)(b+ c+ d+ d∗) = 0,

aα1$
2
1 + aα1$

2
2 − 2aα1k

2 + α1ω − 6α1β
2
1(b+ c+ d+ d∗)

− 6α2
0α1(b+ c+ d+ d∗) + 12α0β

2
1r(b+ c+ d+ d∗) = 0.

Solving this system of algebraic equations yields
Case 1. R(r) = 0.

α0 = α1 = 0,

β1 = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)
, k = ±

√
−a$2

1 − a$2
2 − ω

a
,

U(X) = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)
tanh

[
k(x+ y − νt)

2

]
ei(−$1x−$2y+ωt+θ0), (38)

U(X) = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)
coth

[
k(x+ y − νt)

2

]
ei(−$1x−$2y+ωt+θ0). (39)

Solutions (38) and (39) are a dark and a singular solitons.
Case 2. R(r) = 24r2/25.

α0 = 0, α1 =
2

5

√
6β1r,

β1 = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)
, k = ±

√
−a$2

1 − a$2
2 − ω√

a
,

U(X) = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)

×
[
2
√
6

5

5 sech[k(x+ y − νt)]
5 sech[k(x+ y − νt)]± 1

+
tanh[k(x+ y − νt)]

1± 5 sech[k(x+ y − νt)]

]
× ei(−$1x−$2y+ωt+θ0). (40)

Solution (40) is a straddled bright-dark solitons.
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Case 3. R(r) = 5r2/9.

α0 = 0, α1 = β1r

√
5

3
,

β1 = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)
, k = ±

√
−a$2

1 − a$2
2 − ω

a
,

U(X) = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)

[√
5

3

3 sech[k(x+ y − νt)]
3 sech[k(x+ y − νt)]± 2

+
2

2 coth[k(x+ y − νt)]± 3 csch[k(x+ y − νt)]

]
× ei(−$1x−$2y+ωt+θ0). (41)

Solution (41) is a straddled bright-singular soliton.
Case 4. R(r) = r2 − 1.

α0 = 0, α1 = β1
√
r2 − 1,

β1 = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)
, k = ±

√
−a$2

1 − a$2
2 − ω

a
,

U(X) = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)

×
[

4
√
r2 − 1 sech[k(x+ y − νt)]

3 tanh[k(x+ y − νt)] + 4r sech[k(x+ y − νt)] + 5

+
5 tanh[k(x+ y − νt)] + 3

3 tanh[k(x+ y − νt)] + 4r sech[k(x+ y − νt)] + 5

]
× ei(−$1x−$2y+ωt+θ0) (42)

or

U(X) = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)

×
[√

r2 − 1 sech[k(x+ y − νt)]
r sech[k(x+ y − νt)] + 1

+
tanh[k(x+ y − νt)]

r sech[k(x+ y − νt)] + 1

]
× ei(−$1x−$2y+ωt+θ0). (43)

Solutions (42) and (43) are a straddled bright-dark solitons.
Case 5. R(r) = r2 + 1.

α0 = 0, α1 = β1
√
r2 + 1,

β1 = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)
, k = ±

√
−a$2

1 − a$2
2 − ω

a
,
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U(X) = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)

×
[√

r2 + 1 csch[k(x+ y − νt)]
r csch[k(x+ y − νt)] + 1

+
coth[k(x+ y − νt)]

r csch[k(x+ y − νt)] + 1

]
××ei(−$1x−$2y+ωt+θ0). (44)

Solution (44) is a straddled singular-singular soliton.

3.3 The enhanced Kudryashov method

Balancing Q′′1 and Q3
1 in Eq. (2) implies N = 1. Therefore

Q1(η) = α0 + α1θ(η) + β1
θ′(η)

θ(η)
, (45)

where α0, α1, and β1 are constants to be determined such that α1 6= 0 or β1 6= 0.
Replacing the solution provided by Eq. (45), which fulfills the condition specified in

Eq. (10), into Eq. (2), results in the following set of nonlinear equations:

6α0β
2
1χ(b+ c+ d+ d∗)− 6α0α

2
1(b+ c+ d+ d∗) = 0,

4aα1k
2χ+ 6α1β

2
1χ(b+ c+ d+ d∗)− 2α3

1(b+ c+ d+ d∗) = 0,

aβ1$
2
1 + aβ1$

2
2 − 6α2

0β1(b+ c+ d+ d∗)− 2β3
1(b+ c+ d+ d∗) + β1ω = 0,

aα0

(
$2

1 +$2
2

)
+ α0ω − 6α0β

2
1(b+ c+ d+ d∗)− 2α3

0(b+ c+ d+ d∗) = 0,

−12α0α1β1(b+ c+ d+ d∗) = 0,

aα1$
2
1 + aα1$

2
2 − 2aα1k

2 + α1ω − 6α1β
2
1(b+ c+ d+ d∗)

− 6α2
0α1(b+ c+ d+ d∗) = 0,

4aβ1k
2χ− 6α2

1β1(b+ c+ d+ d∗) + 2β3
1χ(b+ c+ d+ d∗) = 0.

Solving this system of algebraic equations concludes the following results.

Result 1.

α0 = β1 = 0,

α1 = ±

√
χ(a$2

1 + a$2
2 + ω)

b+ c+ d+ d∗
, k = ±

√
a$2

1 + a$2
2 + ω

2a
.

Here we obtain the exact solutions of Eq. (2) as follows:

U(X)±

√
χ(a$2

1 + a$2
2 + ω)

b+ c+ d+ d∗

[
4d

4d2ek(x+y−νt) + χe−k(x+y−νt)

]
× ei(−$1x−$2y+ωt+θ0). (46)
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Setting χ = ±4d2 in solution (46) concludes bright and singular soliton solutions

U(X) = ± 1

2d

√
(a$2

1 + a$2
2 + ω)

b+ c+ d+ d∗

[
sech

(
k(x+ y − νt)

)]
× ei(−$1x−$2y+ωt+θ0)

and

U(X) = ± 1

2d

√
(a$2

1 + a$2
2 + ω)

b+ c+ d+ d∗

[
csch

(
k(x+ y − νt)

)]
× ei(−$1x−$2y+ωt+θ0). (47)

Result 2.
α0 = α1 = 0,

β1 = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)
, k = ±

√
−a$2

1 − a$2
2 − ω

4a
.

Here the exact solutions of Eq. (2) can be expressed as

U(X) = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)

[
4d2ek(x+y−νt) − χe−k(x+y−νt)

4d2ek(x+y−νt) + χe−k(x+y−νt)

]
× ei(−$1x−$2y+ωt+θ0). (48)

Setting χ = ±4d2 in solution (48), we have dark and singular soliton solutions

U(X) = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)

[
tanh

(
k(x+ y − νt)

)]
ei(−$1x−$2y+ωt+θ0)

and

U(X) = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)

[
coth

(
k(x+ y − νt)

)]
ei(−$1x−$2y+ωt+θ0).

Result 3.
α0 = 0, α1 = β1

√
−χ,

β1 = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)
, k = ±

√
−a$2

1 − a$2
2 − ω

a
.

We obtain the exact solutions of Eq. (2) as follows:

U(X) = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)

×
[

4d
√
−χ

4d2eη + χe−η
+

4d2ek(x+y−νt) − χe−k(x+y−νt)

4d2ek(x+y−νt) + χe−k(x+y−νt)

]
× ei(−$1x−$2y+ωt+θ0). (49)
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Setting χ = ±4d2 in solution (49), we have straddled bright-dark and singular-singular
solitons

U(X) = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)

×
[√
−χ
2d

[
sech

(
k(x+ y − νt)

)]
+
[
tanh

(
k(x+ y − νt)

)]]
× ei(−$1x−$2y+ωt+θ0),

U(X) = ±

√
a$2

1 + a$2
2 + ω

2(b+ c+ d+ d∗)

×
[√
−χ
2d

[
csch

(
k(x+ y − νt)

)]
+
[
coth

(
k(x+ y − νt)

)]]
× ei(−$1x−$2y+ωt+θ0).

4 Results and discussion

Fig. 1 illustrates the bright soliton described by Eq. (13), where the parameters k,$1,$2,
a, b, c, d, d∗, and θ0 are all set to 1, while ω and ν are set to 2, at x = 1. Bright solitons are
localized wave solutions that arise in nonlinear systems, characterized by their ability to
maintain their shape and amplitude while propagating through a medium. These solitons
result from a delicate balance between nonlinear effects, which tend to spread the wave,
and dispersive effects, which tend to disperse it.

Fig. 2 shows the dark soliton (15) with respect to $1 = $2 = b = c = d = d∗ =
θ0 = 1, a = −1, ω = 4, and ν = 2 in x = 1. Dark solitons represent localized wave
solutions that arise in nonlinear systems, exhibiting a unique behavior where they create
localized regions of reduced intensity or amplitude within a background field. Unlike
bright solitons, which form peaks or pulses, dark solitons are characterized by their ability
to create troughs or holes in the waveform.

Fig. 3 illustrates the singular soliton described by Eq. (17), where the parameters $1,
$2, b, c, d, d∗, and θ0 are all set to 1, a is set to −1, and ω and ν are set to 4 and 2,
respectively, at x = 1. Singular solitons represent localized wave solutions that arise in
nonlinear systems, exhibiting distinctive features where they create localized regions of
extreme intensity or amplitude within a background field. These solitons are characterized
by their ability to concentrate energy into a single, sharp peak or dip, often leading to
mathematical singularities or discontinuities in the solution.

Fig. 4 illustrates the straddled dark-singular solitons (19) with respect to $1 =$2 =
b= c=d=d∗=θ0=1, a=−1, ω=4, and ν=2 in x=1. Straddled dark-singular solitons
are localized wave solutions that exhibit a unique combination of characteristics from
both dark and singular solitons. These solitons manifest as localized regions of reduced
intensity or amplitude, akin to dark solitons, while simultaneously featuring extreme
concentration of energy into a single, sharp peak or dip, reminiscent of singular solitons.
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Figure 1. 3D contour and 2D graphs of bright soliton solution of Eq. (13).
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Figure 2. 3D contour and 2D graphs of dark soliton solution of Eq. (15).
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Figure 3. 3D contour and 2D graphs of singular soliton solution of Eq. (17).
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Figure 4. 3D contour and 2D graphs of straddled dark-singular solitons of Eq. (19).
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Figure 5. 3D contour and 2D graphs of bright soliton solution of Eq. (22).
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Figure 6. 3D contour and 2D graphs of JEDPT solution of Eq. (25).

Fig. 5 depicts the bright soliton described by Eq. (22), where the parameters k, $1,
$2, a, b, c, d, d∗, and θ0 are all set to 1, while ω and ν are both set to 2, at x = 1.

Moreover, Fig. 6 shows the JEDPT solution (25) with respect to k = $1 = $2 =
a = b = c = d = d∗ = θ0 = 1, ω = ν = 2, and m = 0.25 in x = 1.

The dark soliton solution (29) with respect to k = $1 = $2 = b = c = d = d∗ =
θ0 = 1, a = −1, ω = ν = 4, and x = 1 are plotted in Fig. 7.

Fig. 8 shows the straddled singular-singular solitons solution (33) with respect to
k = $1 = $2 = a = b = c = d = d∗ = θ0 = 1, ω = 3, ν = 2, and x = 1.
Straddled singular-singular solitons are localized wave solutions that exhibit a unique
combination of characteristics from both singular and singular solitons. These solitons
manifest as localized regions of extreme intensity or amplitude, akin to singular solitons,
while simultaneously featuring extreme concentration of energy into a single, sharp peak
or dip, reminiscent of singular solitons.

Fig. 9 illustrates the straddled bright-dark solitons solution described by equation (43),
where the parameters k, $1, $2, a, b, c, d, d∗, and θ0 are all set to 1, while ω and ν are
both set to 4, and r is set to 3, at x = 1.

Fig. 10 depicts the singular soliton solution described by Eq. (47), where the param-
eters k, $1, $2, a, b, c, d, d∗, and θ0 are all set to 1, while ω and ν are both set to 4, at
x = 1.

The governing model has significant applications in various real-world phenomena,
particularly in nonlinear optics, fluid dynamics, and Bose–Einstein condensates. These
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Figure 7. 3D contour and 2D graphs of dark soliton solution of Eq. (29).
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Figure 8. 3D contour and 2D graphs of straddled singlar-singular solitons solution of Eq. (33).
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Figure 9. 3D contour and 2D graphs of straddled bright-dark solitons solution of Eq. (43).
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Figure 10. 3D contour and 2D graphs of singular soliton solution of Eq. (47).
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equations can model light propagation in nonlinear media, allowing for the prediction of
soliton formation and interactions, which are essential for optical communication tech-
nologies. Additionally, they are used to describe wave dynamics in two-dimensional
fluid systems, helping to understand wave stability and behavior in natural resources
like oceans and atmospheric phenomena. In quantum physics, these equations provide
insights into multicomponent Bose–Einstein condensates, which are crucial for exploring
quantum coherence and fundamental quantum behaviors in condensed matter systems.

5 Conclusion

This study has thoroughly analyzed the behavior of optical solitons within (2+1)-dimen-
sional generalized coupled nonlinear Schrödinger equations. Utilizing the enhanced direct
algebraic method, the enhanced Kudryashov method, and the new projective Riccati equa-
tion method, a broad range of soliton solutions have been uncovered, including bright,
dark, singular, and straddled variants. Additionally, identifying solutions characterized by
Jacobi and Weierstrass elliptic functions has significantly enhanced our comprehension
of the intricate dynamics governing optical solitons. The diversity and originality of the
soliton solutions discovered in this study highlight the efficacy and resilience of the inte-
gration techniques employed and make noteworthy contributions to both the theoretical
framework and practical applications in the field of nonlinear optical systems. This paper
establishes a firm groundwork for future study and heralds new prospects for develop-
ments in optical communications and related technological spheres. The study’s results
may lead to more research into how optical solitons interact with new materials, such as
metamaterials and photonic crystals. This could make it easier to control and keep soliton
stability. Moreover, the integration of machine learning techniques with conventional
methodologies may generate novel prospects for forecasting soliton behavior in intricate
situations. Future studies may concentrate on the experimental validation of the proposed
theoretical solutions, perhaps resulting in groundbreaking applications in high-speed data
transmission and nonlinear imaging technologies. Interdisciplinary collaborations, partic-
ularly between applied physics and engineering, may produce significant advancements in
practical applications, hence enhancing our comprehension and application of nonlinear
optical systems.
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