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Abstract. Prostate cancer represents the second most common cancer diagnosed in men and the
fifth most common cause of death from cancer worldwide. In this paper, we consider a nonlinear
mathematical model exploring the role of neuroendocrine transdifferentiation in human prostate
cancer cell dynamics. Sufficient conditions are given for both the biological relevance of the
model’s solutions and for the existence of its equilibria. By means of a suitable Liapunov functional
the global asymptotic stability of the tumour-free equilibrium is proven, and through the use of
sensitivity and bifurcation analyses we identify the parameters responsible for the occurrence of
Hopf and saddle-node bifurcations. Numerical simulations are provided highlighting the behaviour
discovered, and the results are discussed together with possible improvements to the model.

Keywords: prostate cancer, neuroendocrine transdifferentiation, mathematical model, sensitivity
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1 Introduction

Prostate cancer (PCa) is the second most common cause of cancer among men worldwide
[3,18]. Much work has been done to understand the development of this disease. Over the
last few decades, many biological models, such as TRAMP and LADY, have been created
using various strains of genetically engineered mice to simulate PCa growth observed in
humans. Due to the limitations of these mouse models, in vitro experiments have been de-
signed using cells taken from specific strains of human prostate cancer such as the LNCaP
cell line that was established in 1980 by Horoszewicz et al. [9]. Early mathematical
models investigated the link between the concentration of serum prostate specific antigen
(PSA) and tumour volume [23,25,26]. Others explored how different chemical resources
would affect tumour growth, e.g. Kuang et al. who proposed the KNE model [15], which
applies ideas from ecological stoichiometry to tumour growth, and considers that tumour
growth is limited by various physical restraints such as space, nutrients and vascula-
ture. However, as the link between androgen, the male sex hormones testosterone and
dihydrotestosterone, and prostate cancer was explored further [8, 13, 20], mathematical
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models began to focus on the response of PCa tumour growth to androgen concentration.
In 2004, Jackson modelled the tumour as two populations, one androgen dependent (AD)
and the other androgen independent (AI) [11, 12]. Using these models Jackson predicted
that androgen deprivation therapy (ADT) would successfully control tumour growth in
a well-defined region of the parameter space for all time, but that cancer could recur
through AI mechanisms after undergoing ADT. These concepts were further explored by
Ideta et al. [10], who showed that using intermittent ADT can reduce the time to cancer
relapse. While this appears counter-intuitive, they still stated that the reduced time before
cancer reappears is an acceptable trade off when considering the known side effects of
ADT and other possible improvements in the quality of the patient’s life. Later in 2010,
Eikenberry et al. [6] proposed two mathematical models that consider the intracellular
kinetics of the androgen and its receptors. The authors found that decreasing androgen
levels could increase the PCa cell mutation rate, resulting in a more heterogeneous popu-
lation.

Recent work has considered the role of neuroendocrine cells in the re-emergence of
PCa tumours. Neuroendocrine cells are specialised secretion cells with a cell structure
similar to neurons. They are found throughout the human body, including in glands such
as the prostate, and usually contribute to the homeostasis of the surrounding tissues [24]
by secreting various hormones and proteins [19]. Whilst there have been multiple obser-
vations of neuroendocrine cells being present in prostate tumours, the current theories for
their role in cancer development are still considered controversial. One of these theories
concerns the role of neuroendocrine transdifferentiation, which is believed to be caused
by the reduction in androgen levels [24]. This theory proposes that after the tumour
has been under castrate conditions for 16 to 18 months, such as those caused by ADT,
a proportion of the PCa cells undergo transdifferentiation and become neuroendocrine
cells. Transdifferentiation is the irreversible switch of one type of cell to another [21].
Once this switch occurs, neuroendocrine cells are believed to secrete androgen or similar
anabolic hormones, which promote tumour growth as androgen receptor signalling can be
detected even under ADT.

In 2015, Cerasuolo et al. [5] proposed a discrete delay dynamical system to investigate
the theory of neuroendocrine transdifferentiation in PCa based on in vitro experiments
of androgen-deprived conditions on LNCaP cells growing in Petri dishes. In these ex-
periments the LNCaP cells were first grown in an androgen rich environment, before
being transferred to the androgen-deprived condition of the Petri dishes, as shown in
Fig. S1. The mathematical model was inspired by previous work on cell differentia-
tion in hematopoiesis [1, 2] and on PCa, where the cancer cell population is divided in
androgen-dependent and androgen-independent cells that are able to proliferate under in
vivo conditions [6, 17]. In [5] the model represents two cancer cell populations, one with
androgen-dependent cells and the other with neuroendocrine androgen-independent cells.
The model also considers the androgen concentration.

The model was parameterised against experimental data, and was used to forecast tu-
mour growth in the long term. In the first instance the authors showed agreement between
the in vitro experiments and the simulated growth curve. They then simulated the long
term behaviour over 400 days and observed that at the beginning, androgen-dependent
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cells would become almost extinguished, while the neuroendocrine cells remained nearly
constant for the first 150 days. This was followed by an increase in both cell popula-
tions with the system reaching an equilibrium after another 150 days. This predictive
analysis led to the assertion that androgen-dependent cells react to hormone deprivation
by favouring the establishment of a neuroendocrine cell population, which leads to the
development of androgen-resistant PCa in most patients. The authors concluded that
the main novelty of the model stemmed from considering cell transdifferentiation as
a consequence of androgen concentration, and that the most interesting result was the
active role that differentiated cells can play in sustaining the tumour in castrate conditions.

The paper by Cerasuolo et al. did not include any mathematical analysis of the model,
which instead has been performed in this paper. Here, we begin by describing the model
formulation and finding sufficient conditions for the non-negativity and boundedness of
the system solutions (Section 3). In Section 4, after showing the existence of the tumour-
free equilibrium, as well as the possible existence of multiple tumour-present equilib-
ria, we study local and global stability of the tumour-free equilibrium. Using sensitivity
analysis and bifurcation analysis (Section 5), we identify the bifurcation parameters and
the stability switches that can occur. Finally, we illustrate our findings with numerical
simulations, and in Section 6, we discuss the ways in which the model can be improved
mathematically without losing its biological relevance.

2 Model formulation

The model considers two cell populations, L(t), the LNCaP androgen-dependent cells
and the transdifferentiated non-malignant neuroendocrine androgen-independent cells,
N(t). The growth of L(t) cells is affected by changes in the androgen concentration
in the environment, A(t), as it influences their ability to proliferate. In the experiments
the androgen was introduced into the Petri dishes through a charcoal stripped serum, and
as this was the only external source of androgen, the serum could be considered equiv-
alent to the initial androgen concentration. The N(t) cells are assumed to be androgen
independent and post-mitotic; they are unable to proliferate and can only be produced
by transdifferentiation of L(t) cells. The L(t) cells go through asymmetric cell division,
which implies that upon undergoing proliferation a proportion of the daughter cells will be
differentiated. The L(t) cells are divided into three compartments: mature/resting cells,
L(t), proliferating cells, P (t), and transdifferentiating cells, T (t). Note that the quantities
P (t) and T (t) denote different phases of the L(t) cells’ life cycle, and do not therefore
represent new cell types. Two discrete delays are considered: τ1, the average cell cycle
duration for L(t) cells, and τ2, representing the duration of transdifferentiation from L(t)
to N(t) cells.

For brevity in the following, we will denote x(t) as x and x(t − τi) as xτi for x ∈
{A,L,N, P, T} and i = 1, 2. All parameters are assumed to be positive.

Androgen is depleted with constant rate ϕ, and is secreted by N cells with secretion
rate, κ:

dA

dt
= −ϕA+ κN. (1)
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Figure 1. A schematic representation of the cellular behaviour and interactions. Solid arrows represent a one-
way output flow from a compartment. The solid arrow, followed by a dotted compartment and a dashed and
dotted arrow represent the delayed flow through a different phase in the L cell life cycle. The dotted line
represents the secretion of A by N . Finally, the dot and dash line with the black block represents the inhibiting
effect that a high concentration of A has on several mechanisms.

The L cell death occurs at a constant per capita mortality rate, δ. The differentiation
to N happens with the differentiation efficiency kt, and depends on the concentration of
androgen in the environment and, as suggested by experimental evidence [5], is regulated
by the Ricker function α(A) = rAe−aA, where r is the gradient of the differentiation
increase, and a the inverse of the maximum differentiation rate.

Resting cells become proliferating with an introduction rate β(L,A), a continuous
function that is zero in the absence of androgen in the medium, increases as the androgen
concentration increases, and decreases as the L-cell concentration increases. β(L,A)
is expressed as the product of two terms, the first term represents the inhibition of the
mitotic reentry rate (the rate at which L cells become proliferating) due to cell density,
and is described by a Hill function; while the second term represents the dependence of
the introduction rate on the amount of androgen in the medium and is represented by
a Michaelis–Menten function. The β function is based on the β functions used by Adimy
et al. in [1] and [2]:

β(L,A) = β0
θn

θn + Ln
A

b+A
.

Here, β0 is the maximum rate of cell transfer from the resting phase to the proliferating
phase, b is the half-saturation constant for androgen concentration, and θ and n have
similar roles to the Hill coefficients and represent the response to LNCaP population
changes. Finally, we note that β(L,A) is a decreasing function in L such that 0 6
β(L,A)<β0 for all values of L and A.
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The L cells are generated through asymmetrical cell division. This means that rather
than mitosis always resulting in two L cells, a proportion of daughter cells are generated
as N cells. This proportion is regulated by the function α(Aτ1), where the delay related
to cell cycle duration is taken into account, and by kp, i.e. the proliferation rate of L. The
equation for L cells is given by

dL

dt
= −δL− ktα(A)L− β(L,A)L+ 2

(
1−kpα(Aτ1)

)
e−γτ1β(Lτ1 , Aτ1)Lτ1 . (2)

The N -cells die at a constant per capita mortality rate µ, they are generated through the
asymmetrical cell division of P -cells and by the differentiation of L-cells. The equation
for N cells is given by

dN

dt
= −µN + kte

−δτ2α(Aτ2)Lτ2 + 2kpα(Aτ1)e−γτ1β(Lτ1 , Aτ1)Lτ1 . (3)

The transdifferentiating and proliferating cell populations satisfy the equations

dT

dt
= −δT + ktα(A)L− e−δτ2ktα(Aτ2)Lτ2 , (4)

dP

dt
= −γP + β(L,A)L− e−γτ1β(Lτ1 , Aτ1)Lτ1 , (5)

where τ2 represents the time T -cells take to become fully differentiated into N cells, and
γ is the death rate of the proliferating cells.

We observe that equations (1), (2) and (3) are decoupled from (4) and (5) as neither T
nor P appear in the equations of A, L and N . Moreover, equations (4) and (5) can be
solved explicitly as follows:

T = kt

t∫
t−τ2

e−δ(t−s)α
(
A(s)

)
L(s) ds, P =

t∫
t−τ1

e−γ(t−s)β
(
L(s), A(s)

)
L(s) ds. (6)

For biological relevance, we consider the initial conditions as positive continuous func-
tions A(ω) = φ1(ω), L(ω) = φ2(ω) and N(ω) = φ3(ω) for ω ∈ [−τmax, 0], where
τmax = max[τ1, τ2] with A(0) > 0, L(0) > 0, T (0) > 0 and P (0) > 0 satisfying

T (0) = kt

0∫
−τ2

eδsα
(
φ1(s)

)
φ2(s) ds, P (0) =

0∫
−τ1

eγsβ
(
φ2(s), φ1(s)

)
φ2(s) ds,

and N(0) > 0.
We can therefore restrict the study to the model with only three equations:

dA

dt
= −ϕA+ κN,

dL

dt
= −δL− ktα(A)L− β(L,A)L+ 2(1− kpα(Aτ1))e−γτ1β

(
Lτ1 , Aτ1

)
Lτ1 ,

dN

dt
= −µN + kte

−δτ2α(Aτ2)Lτ2 + 2kpα(Aτ1)e−γτ1β(Lτ1 , Aτ1)Lτ1 .

(7)
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By observing that kpα(Aτ1) measures the loss of second generation cells during
mitosis by differentiation, it is clear that we need to assume 0 6 1− kpα(Aτ1) 6 1.

Remark 1. We can see that kpα(Aτ1) > 0 holds as long as A > 0 for all t, and that
a sufficient condition for kpα(Aτ1) 6 1 is that

kpαmax 6 1, (8)

where αmax = α(1/a) = re−1/a.

3 System properties

In this section, we investigate some basic properties of the solutions to system (7), in
particular non-negativity and boundedness. The initial conditions for system (7) are the
positive continuous functions φ(ω) = (φ1, φ2, φ3) ∈ C with−τmax 6 ω 6 0, i = 1, 2, 3.
Here, C denotes the Banach space C([−τmax, 0],R3

+) of continuous functions mapping
the interval [−τmax, 0] into R3

+ with the supremum norm ‖φ‖ = supω∈[−τmax,0] |φ(θ)|,
and |·| is any norm in R3

+ [4].
To understand the parameter values for which model (7) is biologically relevant,

we will study non-negativity and boundedness of the solutions. We prove the following
results.

Lemma 1. If kp 6 ae/r, then any solution of the system given by equations (6) and (7)
remains non-negative whenever it exists.

Proof. It is possible to prove that A is non-negative by contradiction.
Let t0 > 0 be such that A(t0) = 0, A(t) < 0 for t ∈ (t0, t0 + ε) with ε > 0 and

ε < τm and for t < t0, A(t) > 0. Then (1) at t0 becomes dA(t0)/dt = κN(t0).
We will now determine the sign of N(t0). From (3), at t0, we have

dN(t0)

dt
+ µN(t0)

= kte
−δτ2α

(
A(t0 − τ2)

)
L(t0 − τ2)

+ 2kpα
(
A(t0 − τ1)

)
e−γτ1β

(
L(t0 − τ1), A(t0 − τ1)

)
L(t0 − τ1),

and by using the variation of constant formula we get

t0∫
0

d

ds

(
eµsN(s)

)
ds =

t0∫
0

2kpe
(µs−γτ1)α

(
Aτ1(s)

)
β
(
Lτ1(s), Aτ1(s)

)
Lτ1(s) ds

+

t0∫
0

kte
(µs−δτ2)α

(
Aτ2(s)

)
Lτ2(s) ds,
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that is

N(t0) = e−µt0N(0) + e−µt0

t0∫
0

2kpe
(µs−γτ1)α

(
Aτ1(s)

)
β
(
Lτ1(s), Aτ1(s)

)
Lτ1(s) ds

+ e−µt0

t0∫
0

kte
(µs−δτ2)α

(
Aτ2(s)

)
Lτ2(s) ds.

Hence, as all initial conditions are non-negative and as the integrals are strictly positive
and continuous functions, we have that N(t0) > 0 on the closed interval [0, t0], which
means that dA(t0)/dt > 0. Therefore, on the interval (t0, t0 + ε), we have that A(t) is
negative and increasing, which is in contradiction to the initial hypothesis A(t0) = 0, and
therefore A is non-negative.

By contradiction and using the non-negativity of A it is possible to prove that L is
non-negative.

Suppose there exists t0 > 0 and 0 < ε < τ1 such that L(t) > 0 for t < t0, L(t0) = 0,
Lτ1(t) > 0 and L(t) < 0 for t ∈ (t0, t0 + ε). Therefore (2) at t0 becomes

dL(t0)

dt
= 2
(
1− kpα

(
Aτ1(t0)

))
e−γτ1β

(
Lτ1(t0), Aτ1(t0)

)
Lτ1(t0) > 0.

This is a contradiction of L(t) < 0 for t ∈ (t0, t0 + ε), and therefore L is non-negative.
The non-negativity of N can be proved using the same reasoning as for L.

Remark 2. We observe that the positivity of A and L imply the positivity of both P
and T by considering recurrence arguments applied to the integral forms (6).

Given the non-negativity of the solutions (Lemma 1), in order to prove their bounded-
ness, we will show that they are bounded above.

Lemma 2. Provided that
β0

(
2e−γτ1 − 1

)
6 δ (9)

and Lemma 1 is satisfied, then the solutions of system (7) are bounded.

Proof. Let

Z(t) = L+ 2e−γτ1
t∫

t−τ1

(
1− kpα

(
A(s)

))
β
(
L(s), A(s)

)
L(s) ds.

We can observe that Z(t) is a differentiable function in [0,+∞), and its derivative is

Ż(t) = L̇+ 2e−γτ1
(
1−kpα(A)

)
β(L,A)L− 2e−γτ1

(
1−kpα

(
Aτ1
))
β(Lτ1 , Aτ1)Lτ1 ,

which, with substitution of L̇ from (7), becomes

Ż(t) = −δL− ktα(A)L− β(L,A)L+ 2e−γτ1
(
1− kpα(Aτ1)

)
β(Lτ1 , Aτ1)Lτ1

+ 2e−γτ1
(
1−kpα(A)

)
β(L,A)L− 2e−γτ1

(
1−kpα(Aτ1)

)
β(Lτ1 , Aτ1)Lτ1 .
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Therefore from 0 6 α(A) 6 αmax we have that

Ż(t) 6 L
((

2e−γτ1 − 1
)
β(L,A)− δ

)
.

If (9) holds and as L is positive and β(L,A) is a decreasing function in L such that
β(L,A) < β0, it follows that Ż(t) 6 0 for t > 0 and therefore Z(t) is decreasing. As
Z(t) is a non-negative function, as the integral is of a strictly positive and continuous
function on the closed interval of [t, t + τ1], then it follows that Z(t) is bounded, which
implies that L is bounded on [0,∞).

Let us now consider equation (3) for N . Using the variation of constant formula, we
obtain

t∫
0

d

ds

(
eµsN(s)

)
ds = 2kp

t∫
0

eµs−γτ1α
(
Aτ1(s)

)
β
(
Lτ1(s), Aτ1(s)

)
Lτ1(s) ds

+ kt

t∫
0

eµs−δτ2Lτ2(s)α
(
Aτ2(s)

)
ds.

That is

N = e−µtN(0) + 2kpe
−µt

t∫
0

eµs−γτ1α
(
Aτ1(s)

)
β
(
Lτ1(s), Aτ1(s)

)
Lτ1(s) ds

+ kte
−µt

t∫
0

eµs−δτ2Lτ2(s)α
(
Aτ2(s)

)
ds,

which gives

N 6 e−µtN(0) +
2kp
µ
α

(
1

a

)
β0L

∗e−γτ1
(
1− e−µt

)
+
kt
µ
α

(
1

a

)
L∗e−δτ2

(
1− e−µt

)
,

where L∗ = sup[0,+∞) L(t). We conclude that N is bounded for all t ∈ [0,+∞).
We will now prove that A is bounded. As we did for N , by considering the variation

of constant formula applied to equation (1) we get that

t∫
0

d

ds

(
eϕsA(s)

)
ds = κ

t∫
0

eϕsN(s) ds.

That is

A = e−ϕtA(0) + κe−ϕt
t∫

0

eϕsN(s) ds,

which is
A 6 e−ϕtA(0) +

κN∗

ϕ

(
1− e−ϕt

)
,
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where N∗ = sup[0,+∞)N(t). Therefore, we see that limt→∞ supA(t) < +∞, and that
A is bounded for all t ∈ [0,+∞). This concludes the proof.

Remark 3. It is important to note that if 2e−γτ1 − 1 6 0, then condition (9) is automat-
ically satisfied. Also, by solving (9) for τ1 we are able to find a lower bound for the first
delay, which ensures that the model is biologically relevant, giving

τ1 >
1

γ
log

(
2β0

δ + β0

)
.

4 Equilibria and their stability analysis

4.1 Existence of equilibria

The general equilibrium of system (7) Ē = (Ā, L̄, N̄) can be found by solving the
following equations:

0 = −ϕĀ+ κN̄,

0 = −δL̄− ktα(Ā)L̄− β(L̄, Ā)L̄+ 2
(
1− kpα(Ā)

)
e−γτ1β(L̄, Ā)L̄,

0 = −µN̄ + kte
−δτ2α(Ā)L̄+ 2kpα(Ā)e−γτ1β(L̄, Ā)L̄.

(10)

From the second equation of (10) we obtain that either L̄ = 0, which leads us to the
tumour-free equilibrium E0 = (0, 0, 0), or that the following must be satisfied:

0 = −δ − ktα(Ā)− β(L̄, Ā) + 2
(
1− kpα(Ā)

)
e−γτ1β(L̄, Ā).

This can be solved for β(L̄, Ā), giving

β(L̄, Ā) =
ktα(Ā) + δ

2e−γτ1(1− kpα(Ā))− 1
. (11)

By observing that by definition β(L,A) > 0 for all L, A, then in order to be able to solve
equation (11), we must assume that 2e−γτ1(1 − kpα(Ā)) − 1 > 0, which is satisfied if
τ1 < (1/γ) log(2(1 − kpαmax)). We denote the right-hand side of (11) by β∗(Ā), then
(10) yields the other components of Ē as functions solely dependent on Ā. Solving the
third equation of (10) for N̄ gives us

N̄ =
L̄α(Ā)(kte

−δτ2 + 2e−γτ1β∗(Ā))

µ
,

which, via the first equation of (10), yields to

L̄ =
µϕĀ

κα(Ā)(kte−δτ2 + 2e−γτ1β∗(Ā))
=

µϕ

κre−aĀ(kte−δτ2 + 2e−γτ1β∗(Ā))
. (12)
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From (11) we have that at an internal equilibrium β(L̄, Ā) = β∗(Ā), and by substituting
expression (12) obtained for L̄ we can generate an equation in Ā, which when solved will
give us the equilibria of (7). This leads to the transcendental equation

β0θ
nĀ

(Ā+b)(θn + ( µϕĀ

κα(Ā)(kte−δτ2+
2kpe−γτ1 (ktα(Ā)+δ)

2e−γτ1 (1−kpα(Ā))−1
)
)n)

=
ktα(Ā)+δ

2e−γτ1(1−kpα(Ā))−1
. (13)

We observe that

β∗(0) = lim
Ā→∞

β∗(Ā) =
δ

2e−γτ1 − 1
and

β∗′(Ā) =
((2e−γτ1 − 1)kt + 2e−γτ1kpδ)α

′(A)

(2e−γτ1(1− kpα(A))− 1)2
,

which implies that, like the Ricker function, β∗(Ā) has a maximum at 1/a. If we now
analyse the left-hand side of (13), we can see that

lim
Ā→∞

L̄(Ā) = +∞ =⇒ β(L̄(0), 0) = lim
Ā→∞

β
(
L̄(Ā), Ā

)
= 0.

Also, if we write

β(L̄, Ā) = g(L̄)f(Ā), where g(L̄) = β0
θn

θn + L̄n
, f(Ā) =

Ā

b+ Ā
,

then
∂

∂Ā
β(L̄, Ā) =

∂g

∂L̄

∂L̄

∂Ā
f(Ā) +

∂f

∂Ā
g(L̄).

From the expression of the derivative for L̄

L̄′(Ā) =
eĀαϕµ(e−δτ2ktα+ 2e−γτ1αβ∗(Ā)− 2e−γτ1β∗

′
(Ā))

κr(e−δτ2kt + 2e−γτ1β∗(Ā))2

and since β∗ has a maximum at 1/a, the following result holds.

Proposition 1. If e−δτ2ktα+2e−γτ1αβ∗(0)−2e−γτ1β∗
′
(0) < 0, then there exists a value

A1 (< 1/a) such that the function L̄(A) has a minimum in A1. If

e−δτ2ktα+ 2e−γτ1αβ∗(0)− 2e−γτ1β∗
′
(0) > 0,

then L̄ is monotonically increasing in A.

From Proposition 1 and by observing that f(0) = 0 we can see that the function
β(L̄, Ā) will initially increase and then tend to zero as A → ∞, which ensures the
existence of at least one maximum A∗ > A1 for β(L̄, Ā). Given these observations,
a sufficient condition for the existence of internal equilibria (tumour-present) would be
g(L(1/a))f(1/a) > β∗(1/a). However, this would be far from an optimal sufficient
condition as will be shown with a numerical example below. The above results are sum-
marised in the following proposition.
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Proposition 2. System (7) admits the following equilibria:

(i) For all parameter values, system (7) admits the tumour-free equilibrium E0 =
(0, 0, 0). If inequality (9) is satisfied, then E0 is the only equilibrium.

(ii) If

g

(
L

(
1

a

))
f

(
1

a

)
> β∗

(
1

a

)
, (14)

then (7) will admit at least two tumour-present equilibria provided that

2e−γτ1(1− kpαmax)− 1 > 0, (15)

and condition (8) holds.

In Fig. S2, we observe, by plotting the left-hand side, which we relabel β̄(Ā), against
the right-hand side β∗(Ā) whilst varying Ā, that there can be up to 4 intersections between
the two functions. As β∗(0) 6= 0 (Fig. S2 inset), each of the intersections represent distinct
tumour-present equilibria.

Remark 4. It is possible to observe that by changing the parameter value κwhile keeping
the other parameters fixed, the number of tumour-present equilibria changes through
0, 1, 2, 3, and 4 (not shown).

In Section 5, we explore in detail how the number of equilibria and their stability
properties change depending on parameter values.

4.2 Stability analysis

Here, we derive results concerning the local stability of the tumour-free equilibrium that
will additionally be used in Section 4.2.1 in order to prove its global stability. Local
stability of the equilibria is determined by the characteristic equation, i.e.

det
∣∣λI −X − Y e−λτ1 − Ze−λτ2

∣∣ = 0, (16)

where I ∈M3×3(R) is the identity matrix, andX , Y andZ are the Jacobian matrices with
respect to the non-delayed, τ1-delayed and τ2-delayed variables, respectively (the explicit
expression of the characteristic equation can be found in the Supplemental material).

Theorem 1. The tumour-free state E0 is always locally asymptotically stable.

Proof. The characteristic equation (16) computed at E0 reduces to

(λ+ ϕ)(λ+ δ)(λ+ µ) = 0, (17)

which gives λ1 = −ϕ, λ2 = −δ λ3 = −µ.
Hence, since Re(λi) < 0 for i = 1, 2, 3, the tumour-free stateE0 is always stable.

Remark 5. We observe that the stability of the tumour-free state E0 is not dependent on
either of the delays of system (7).
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Because of the complexity of the explicit form of the characteristic equation and the
impossibility to get explicit expressions of the tumour-present states, the stability of the
latter will be analysed numerically.

4.2.1 Global stability of E0

We will now prove that under the sufficient condition that ensures the boundedness of
solutions and the uniqueness of the tumour-free equilibrium, it is possible to prove that
E0 is globally asymptotically stable.

Theorem 2. If condition (9) holds, then all solutions (A,L,N) of (7) converge to the
tumour-free state E0 as t→∞.

Proof. Consider the function

V1(t) =
µ

k
A(t) + L(t) +N(t).

Along the solutions of (7), we obtain

V̇1(7) = −µ
k
ϕA+ µN − δL− α(A)ktL− β(A,L)L

+ 2e−γτ1β(Aτ1 , Lτ1)Lτ1 − 2kpα(Aτ1)e−γτ1β(Aτ1 , Lτ1)Lτ1

− µN + 2kpα(Aτ1)e−γτ1β(Aτ1 , Lτ1)Lτ1 + ktα(Aτ2)e−δτ2Lτ2 .

We then consider the functional

V2(t) = 2e−γτ1
t∫

t−τ1

β
(
A(u), L(u)

)
L(u) du+ kte

−δτ2

t∫
t−τ2

α(A(u))L(u) du.

Finally, we define a Liapunov functional

V = V1 + V2.

Since

V̇2(7) = 2e−γτ1β(A,L)L− 2e−γτ1β(Aτ1 , Lτ1)Lτ1 + kte
−δτ2α(A)L

− kte−δτ2α(Aτ2)Lτ2 ,

then

V̇(7) = −µ
k
ϕA+ µN − δL− α(A)ktL− β(A,L)L

+ 2e−γτ1β(Aτ1 , Lτ1)Lτ1 − 2kpα(Aτ1)e−γτ1β(Aτ1 , Lτ1)Lτ1

− µN + 2kpα(Aτ1)e−γτ1β(Aτ1 , Lτ1)Lτ1 + ktα(Aτ2)e−δτ2Lτ2

+ 2e−γτ1β(A,L)L− 2e−γτ1β(Aτ1 , Lτ1)Lτ1 + kte
−δτ2α(A)L

− kte−δτ2α(Aτ2)Lτ2 ,
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giving

V̇(7) = −µ
k
ϕA− α(A)ktL

(
1− e−δτ2

)
− L

(
β(A,L)

(
1− 2e−γτ1

)
+ δ
)
.

Since Lemma 1 ensures the positivity of maximals, when condition (9) holds, then we
obtain that V̇ (t)|(7) 6 0. Therefore, the maximum invariant set in {(A,L,N):
V̇ (t)|(7) = 0} is E0, and by applying the Liapunov–LaSalle-type theorem for delayed
systems [14] we get (A(t), L(t), N(t)) → (0, 0, 0) as t → ∞, thus E0 is globally
attractive.

From the results of local stability in Theorem 1 and the global attractivity in 2 we
obtain the following corollary.

Corollary 1. If condition (9) holds, then the tumour-free equilibrium E0 = (0, 0, 0) of
system (7) is globally asymptotically stable in R3

+.

5 Numerical results

In this section, we provide numerical results that allow us to explore system (7) further.
First, we use bifurcation analysis to analyse different system behaviours with respect to
the parameters that cannot be estimated experimentally, then we run a sensitivity analysis
to establish which parameters contribute most to the uncertainty in the model outputs, and
finally, we present some numerical simulations under various parameter conditions.

5.1 Bifurcation analysis

In [5] the authors show that only three of the parameters in system (7) cannot be estimated
by designing suitable experiments, these are kt, kp and κ. Therefore, such parameters
could prove to be mathematically interesting, and we explored the behaviour of (7) as kt,
kp and κ vary (kt is not shown as it exhibits the same bifurcation behaviour as kp).

In order to investigate the parameters κ and kp for bifurcations, we used the software
DDE Biftool v3.1.1 [7] with the parameter values as in Table 1 and with the ranges
[0.00001, 0.02] and [0, 0.7] for κ and kp, respectively. Results from the bifurcation analy-
sis are shown in Figs. 2(a) and S3, with Fig. 2(a) showing a shorter range as the behaviour
of κ does not change for κ > 0.01. The kp range ensures that condition (8) was satisfied.

Table 1. Parameter values taken from [5].

Parameter Value Parameter Value
ϕ 0.08 a 1.5
κ 0.017 β0 1.81
δ 0.013 b 0.2
kt 0.52 θ 0.85
kp 0.41 r 3.67
γ 0.013 τ1 1.43
µ 0.006 τ2 7
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(a) Bifurcation diagram with respect to κ (b) Zoom of bifurcation diagram (a) withA60.03.

Figure 2. Bifurcation diagrams produced using DDE Biftool with parameter values taken from Table 1. Red
indicates an unstable equilibrium, an unstable equilibrium with a stable limit cycle, and green is a stable
equilibrium. The pink circle indicates the presence of a saddle-node bifurcation, and the black square indicates
a Hopf bifurcation. (b) shows the unstable tumour-present equilibrium near the tumor free state E0.

As we can see from Fig. 2(a), varying κ in the range [0.00001, 0.005] greatly affects
the number of tumour-present equilibria as well as their stability properties. For very small
values, κ < 0.00024, only the tumour-free state E0 exists, but increasing κ leads to a sad-
dle node bifurcation, which results in two tumour-present equilibria, one stable and one
unstable. Figure 2(b) shows that the unstable tumour-present equilibrium heads very close
to the tumour-free state E0. When κ ≈ 0.00055, the stable tumour-present equilibrium
undergoes a Hopf bifurcation becoming unstable, and a limit cycle appears. When κ ≈
0.00077, a new saddle-node bifurcation occurs, again producing two additional tumour-
present equilibria, one stable and one unstable. As κ increases, the new stable tumour-
present equilibrium undergoes a Hopf bifurcation, leading to the appearance of a limit
cycle (κ ≈ 0.00096), but continuing to increase κ leads to a second Hopf bifurcation,
returning to a stable tumour-present equilibrium when κ ≈ 0.0047. The second unstable
tumour-present equilibrium does not change behaviour, while κ increases.

Figure S3(a) shows that changing kp does not change the stability or behaviour of
the largest stable tumour-present equilibrium or the smallest unstable tumour-present
equilibrium (which is shown in Fig. S3(b)). As kp increases through 0.347, a saddle node
bifurcation occurs. The stable tumour-present equilibrium undergoes a Hopf bifurcation
as kp increases, leading to the appearance of an unstable tumour-present equilibrium and
a limit cycle. Increasing kp further does not change the stability or behaviour of any of
the tumour-present equilibria.

Both Figs. 2(a) and S3(a) confirm that the tumour-free equilibriumE0 is always stable.

A bifurcation analysis was also performed for r, a and θ (not shown). The bifurcation
diagrams for a and r, Figs. S3(c) and S3(d) (see Supplemental material), respectively,
were obtained with parameter ranges such that condition (8) was satisfied. While with r
the system exhibits the same bifurcations and stability changes as with kp, increasing a
decreases the number of tumour-present equilibria with a saddle node bifurcation at a ≈
1.691.
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5.2 Sensitivity analysis

A global sensitivity analysis (SA) was performed to examine the response of system (7) to
parameter variation following the approach by Marino et al. [16]. Since the relationship,
including monotonicity, between the parameters and the outputs is not known a priori, two
methods were used: (i) Latin Hypercube Sampling/Partial Rank Correlation Coefficient
(LHS/PRCC) sensitivity analysis; and (ii) an extended Fourier amplitude sensitivity test
(eFAST) [16]. The two methods provide different rankings to the same parameters, so
a dual method approach helps to highlight additional parameters of interest. In this way,
we were able to reduce some of the uncertainty caused by performing the analysis on
a large number of parameters simultaneously.

We considered all parameters taking values in R. Therefore, n, which is the exponent
in the β(L,A) function and is assumed to be an integer, was excluded and was taken to be
n = 4. The parameter values used for the SA were either derived as means of parameter
ranges obtained from experimental data (see [5]) or were taken from literature (Table S1).
Parameter ranges were constructed to reflect a 10% and a 20% variation in the data, and
the parameters were assumed to be random variables with uniform distributions. We took
the history to be the constant values φ(ω) = (10, 0.1, 0) when ω ∈ [−max{τ1, τ2}, 0),
and the initial conditions to be φ(0) = (3.74, 1.95, 17.58), close to the upper stable
tumour-present equilibrium shown in Fig. 2. This was done to reflect the experimental
conditions [5] and to start close to a stable equilibrium to avoid possible unstable mani-
folds that could disrupt the results. It should be noted that condition (8) was met for all
simulations.

The sensitivity analysis was run against L and N outputs in order to highlight the
effect of parameter values on the outcome of the tumour.

Table 2. PRCC and eFAST ranks for both parameter ranges. Dark
grey background indicates a significant PRCC value, while a light grey
background represents an insignificant result.

Parameter 10% Range 20% Range
PRCC eFAST PRCC eFAST

L N L N L N L N

ϕ −0.776 0.949 4 3 −0.814 0.949 12 11
κ 0.77 −0.943 5 2 0.794 −0.949 1 1
δ −0.429 −0.113 7 8 −0.534 −0.143 6 9
kt −0.373 0.585 8 7 −0.221 0.563 11 5
kp −0.005 0.0562 15 14 −0.094 0.127 8 6
γ −0.040 −0.0706 10 13 −0.038 0.083 15 12
µ −0.816 −0.677 6 5 −0.822 −0.701 14 15
r −0.126 0.601 14 4 −0.405 0.612 13 2
a 0.845 −0.966 3 1 0.853 −0.965 5 4
β0 0.89 0.068 2 9 0.895 0.265 7 8
b −0.127 −0.021 11 15 0.027 0.082 4 13
θ 0.992 0.677 1 6 0.993 0.638 2 10
τ1 −0.093 −0.172 13 10 −0.083 0.008 9 3
τ2 −0.046 −0.164 9 12 −0.244 −0.132 10 7

Dummy −0.062 0.024 12 11 −0.091 0.004 3 14
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The PRCC were generated using a Monte Carlo method called the Latin Hyperspace
Sampling (LHS) technique [22]. The analysis was performed using the Matlab R2019b
solver dde23 over 200 runs, simulating 500 days of PCa growth to allow solutions to
converge to a final behaviour. The calculated PRCC values can be seen in Table 2. The
parameters with large PRCC values (> 0.5 or<−0.5) statistically have the most influence
[27]. However, it should be noted that any parameter with a PRCC value with modulus
larger than that of the dummy value may be significant [16].

The eFAST method was used to generate the first order sensitivity (Si) and total
order sensitivity (STi ) of each parameter. It works by calculating the variance of the
model output based on the input parameters variation. This variance is partitioned to
determine what fraction can be explained by each input parameter. Parameters with total
order sensitivity less than or equal to the dummy parameter’s total order sensitivity are
considered to have no significant influence on the outcome of the system [16]. The values
in Table 2 (eFAST columns) represent the ranks of STi in decreasing order (1 is the most
sensitive).

The PRCC of the parameters were also computed dynamically and plotted against
time as shown in Figs. S4(a), S4(b), S6(a) and 5(d) (see Supplemental material), which
demonstrate the variation in PRCC over time with respect to the 10% and 20% parameter
ranges. Across both parameter ranges the greatest change occured in the first 100 days
with all parameters reaching a constant PRCC at around 150 days. The time plots of L
and N across the 200 runs, Figs. S4(c), S4(d), S6(c) and S6(d) show that all the solutions
head to a stable tumour-present equilibrium.

From Table 2 and the bar graphs in Figs. 3 we observe that in the 10% range, there are
five incidents of non significance from PRCC with kp, γ, τ1 and τ2 being not significant
for L, and b for N . Moving to the 20% range, seen in Figs. S5(a) and S5(b), we find that
N has no not-significant parameters, and kp and τ2 become significant for L. We should
note that increasing the parameter range only caused δ for L to become highly significant
with no parameters becoming less significant, and that for N , all of kp, γ and β0 for the
10% range and γ, b and τ1 for the 20% range have small enough PRCC values for their
significance to be investigated further.

The eFAST rankings from Table 2 and the bar graphs in Figs. 4, S7(a) and S7(b)
show that κ and θ are consistently sensitive across both parameter ranges. Increasing the
parameter range to 20% causes all other parameters to become insignificant for L, while
kp, γ, µ, b and τ2 change their significance for N with µ becoming the only insignificant
parameter for N .

Comparing the PRCC and eFAST results we see that eFAST finds that more parame-
ters are insensitive on both parameter ranges, and that κ, b, θ and τ1 are the parameters for
which both methods record the same results across both variables and parameter ranges.
Finally, r is an interesting parameter as for both methods, the significance for L and N
does not change when increasing the parameter range, even though the methods do not
give the same significance.

From Table 2 it is clear that κ and θ are the most significant parameters with both
methods, with ϕ, µ and a consistently highly significant from the PRCC. It is notable that
these parameters regulate the reintroduction of mature cells in the proliferating phase (θ),
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(a) PRCC values for L (b) PRCC values for N

Figure 3. Bar graphs showing the PRCC values for L and N over the 10% parameter ranges.

(a) STi for L (b) STi for N

Figure 4. Plots generated by eFAST for the 10% parameter ranges.

how much testosterone is made available through N -cells to L-cells for their growth (κ),
the androgen degradation rate (ϕ), the death rate of N -cells (µ) and the maximum rate of
the differentiation from L to N cells (a).

5.3 Numerical simulations

Using the Matlab R2019b solver dde23 with step size tolerance 10−6, we simulated the
various system behaviours disclosed by the bifurcation analysis as well as the global
stability property of the tumour-free state when condition (9) holds. In fact, as Fig. 2(a)
illustrates, by varying κ in the interval [0, 0.0047] the system undergoes five bifurcations
with changes in both the number of equilibria and their stability properties. In this sub-
section, we will explore numerically the dynamics of system (7) for κ = 0.00017, κ =
0.0009, κ = 0.003 and κ = 0.005. Unless otherwise stated, we use the parameter values
from Table 1 with final time at 1000 days. We consider the following constant history
values φ(ω) = (10, 0.1, 0), when ω ∈ [−max{τ1, τ2}, 0), to replicate the high androgen
concentration environment used to prepare the cancer cells before the experiment [5], and
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(a) A solutions from different ICs
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(b) L solutions from different ICs
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(c) N solutions from different ICs (d) Phase portrait of all initial conditions.

Figure 5. Plots with different initial values illustrating the global stability of the tumour-free state E0 when
κ = 0.00017 and other parameter values are from Table 1. Here the solid line corresponds to φ(0) = (2, 3, 16),
the dashed line to φ(0) = (1, 2, 3), the dotted line to φ(0) = (0.6, 0.5, 1.5), and the dash-dotted line to
φ(0) = (0.3, 0.1, 1). The circle on the phase portrait marks the tumour-free state E0 at (0, 0, 0).

the constant initial values φ(0) = (A0, L0, N0). In each figure, we present solutions for
A, L and N with different initial values φ(0) and the corresponding phase portrait.

If κ = 0.00017, then condition (9) is satisfied and the tumour-free equilibrium, E0, is
globally asymptotically stable. From Fig. 5 we can see that the L component approaches
the trivial equilibrium faster than both A and N , taking less than 300 days for all initial
values, while A and N can take up to 900 days for the largest initial value. A plausible
explanation is that N -cells mortality rate, µ, is much lower than the L-cells one, γ, and
A is produced by N -cells. If condition (9) is not satisfied, then the system converges to
a stable tumour-present equilibrium for all φ(0) considered (Fig. S8).

For κ = 0.0009, it is possible to distinguish three different behaviours of the system as
shown in Fig. 6, with one initial value heading to a stable tumour-present equilibrium, one
going to the tumour-free state E0 and the others tending towards a limit cycle, consistent
with Fig. 2(a).

When κ = 0.003, we can see that the solutions approach one of two limit cycles, and
the initial condition close to the tumour-free state E0 is still in its basin of attraction. It
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(a) A solutions from different ICs
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(b) L solutions from different ICs
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(c) N solutions from different ICs (d) Phase Portrait of all initial conditions

Figure 6. Plots with different initial values illustrating the different system behaviours when κ = 0.0009 and
other parameter values are from Table 1. The grey solid line corresponds to φ(0) = (3, 0.961086, 90.2606),
the black dashed line to φ(0) = (1, 0.261, 45.26), the black dotted line to φ(0) = (0.347, 0.298, 11.36),
the black dash-dotted line to φ(0) = (0.02; 0.121; 3), the grey dashed line to φ(0) = (0.002, 0.298, 0.176),
and finally, the black solid line to φ(0) = (0.001; 0.001; 0.001). The green dots represents the steady tumour-
present equilibria and the red dots the unstable ones.

is interesting to note that the limit cycle corresponding to higher androgen levels (HAL)
has a shorter period, approximately 8 days, compared to the limit cycles corresponding
to lower androgen levels (LAL), over 400 days, which also has a longer period compared
to the corresponding limit cycle in the case when κ = 0.0009. We observe that in the
case of the HAL limit cycle the oscillation only happens along the L-axis and with
a period comparable to the τ2 delay value from Table 1, while for the LAL limit cycle, all
components oscillate as shown in Fig. 7.

It is worthy of note that when the initial values are such that the trajectories are at-
tracted by the second limit cycle, there are long periods of time (∼200 days) in which the
tumour cells are almost extinct. In a clinical setting, this would correspond to considering
the patient disease-free as N -cells are non-tumorigenic and cannot be detected through
the blood-based PCa tumour markers [5].

Finally, for κ = 0.005, all of the initial conditions, including the one close to the
tumour-free state E0, give rise to trajectories that tend to the stable tumour-present
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(a) A solutions from different ICs
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(b) L solutions from all the ICs
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(c) L solutions from the larger two ICs
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(d) L solutions from the smaller three ICs
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(e) N solutions from different ICs (f) Phase Portrait of all initial conditions.

Figure 7. Plots with different initial values illustrating the different system behaviours when κ = 0.003 and
other parameter values are from Table 1. The grey solid line corresponds to φ(0) = (3, 0.961086, 90.2606),
the solid black line to φ(0) = (1, 0.261, 45.26), the black dotted line to φ(0) = (0.347, 0.298, 11.36), the
black dash-dotted line to φ(0) = (0.02; 0.121; 3), the grey dashed line to φ(0) = (0.002, 0.298, 0.176), and
finally, the black dashed line to φ(0) = (0.001; 0.001; 0.001). The green dots represents the steady tumour-
present equilibria, and the red dots the unstable ones. L solutions have been separated according to their initial
values to adequately display their behaviour, and we note that the oscillation frequency in Fig. 7(c) is comparable
to that of the τ2 delay.
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(a) A solutions from different ICs
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(b) L solutions from different ICs
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Figure 8. Plots with different initial values illustrating the different system behaviours when κ = 0.005 and
other parameter values are from Table 1. The grey solid line corresponds to φ(0) = (3, 0.961086, 90.2606),
the black dashed line to φ(0) = (1, 0.261, 45.26), the black dotted line to φ(0) = (0.347, 0.298, 11.36),
the black dash-dotted line to φ(0) = (0.02; 0.121; 3), the grey dashed line to φ(0) = (0.002, 0.298, 0.176),
and finally, the black solid line to φ(0) = (0.001; 0.001; 0.001). The green dots indicate where the equilibria
(both tumour-present and tumour-free) are on the phase portrait, and the red dots represent the unstable tumour-
present equilibrium.

equilibrium (Fig. 8). Interestingly, for initial conditions such that L < 0.9, we observe
a transition phase with large oscillations in L disappearing into the tumour-present equi-
librium, suggesting that the limit cycle could have become unstable (Fig. 2(a)). Increasing
κ removes such behaviour as shown in Figs. S4, S5 obtained with the baseline parameters.

6 Discussion and conclusion

In this paper, we explored the dynamics of the discrete-delay dynamical system proposed
by Cerasuolo et al. [5] to investigate the neuroendocrine transdifferentiation of PCa cells
grown in vitro in androgen-deprived conditions. The model, based on experimental evi-
dence, had already been compared to biological data, but the authors had not performed
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an exhaustive analytical and/or numerical study of this dynamical system. Here, analyt-
ical properties of system (7) solutions, such as boundedness and positivity, were proved
showing that the model has the necessary features to be biologically significant. The
local and global stability analysis of the tumour-free equilibrium E0, together with the
sensitivity and bifurcation analyses provide further insights into the system dynamics.
Finally, through the use of the latter numerical methods, we were able to determine which
parameters are the most influential on the outcome of tumour growth. Via numerical
examples we highlighted the different behaviours of the model.

Interestingly, the most significant parameters from both methods of sensitivity anal-
ysis were κ and θ, the production of testosterone from N -cells and the reintroduction of
mature cells in the proliferating phase, respectively. Other highly significant parameters
were the androgen degradation rate, ϕ, the N -cells death rate, µ, and the maximum
transdifferentiation rate, a, which suggest that in androgen-depleted conditions the PCa
tumour cells survival is heavily dependent on the rate at which L-cells transform into N -
cells, as well as the efficiency of the N -cells at surviving and producing testosterone.
However, the bifurcation analysis showed that the most interesting dynamics can be
observed by changing κ. In particular, from Fig. 2(a) we can see a very rich dynamics
emerging as κ takes values in the range (0, 0.0047). Even a small increase in κ allows
to move from a situation of global stability of the trivial equilibrium to one in which the
L-cells will almost always survive (κ > 0.00024) depending on the initial conditions.
The sensitivity analysis demonstrates that both τ1 and τ2 are never highly significant for
system (7).

The analytical and numerical results show that when subjected to ADT, tumourL-cells
that fail to divide or, equivalently, to move from the mature to the proliferating phase
quickly enough, eventually become extinct (Fig. 5). Bi-stability is observed for κ ∈
(0.00024, 0.00055) (Fig. S6), for larger values, oscillatory behaviours appear, until finally
when κ > 0.0047, solutions will either go towards the tumour-free equilibrium E0 or
towards the stable tumour-present equilibrium. However, what is of note in all of these
cases is that as soon as there is enough (even if minimal) release of testosterone from
N -cells, the tumour is able to sustain itself, regardless of the lack of androgen imposed by
the therapy. It is interesting to note that most of the cyclic behaviours can be observed only
for a small window of κ values and that even if counter-intuitive such a survival strategy
could be the most successful one for the tumour cells. Certainly, from a therapeutic point
of view it is of extreme importance to consider the possibility of being unable to detect
the tumour when in fact it persists under a different guise.

From the sensitivity analysis we can conclude that the delays are neither highly sig-
nificant for both cell populations L and N at the same time, nor that they are consistently
significant using either method. This seems to suggest that modifications to system (7)
could involve removing one or both delays as well as giving additional emphasis to the
sensitive parameters κ, θ, ϕ, µ, a and associated functions. Hence, further studies could
focus on the feedback loop regulating the release of testosterone and on gaining additional
insights into the androgen-dependent mechanisms regulating LNCaP cell transdifferenti-
ation.

Nonlinear Anal. Model. Control, 26(5):884–913, 2021
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Supplemental material

Linear stability: Characteristic equation

Equation (16) can be written as∥∥∥∥∥∥
λ+ ϕ 0 −κ

x21 + y21e−λτ1 λ− x22 − y22e−λτ1 0
−y31e−λτ1 − z31e−λτ2 −y32e−λτ1 − z32e−λτ2 λ+ µ

∥∥∥∥∥∥ = 0,

where

x21 = kt
dα(A)

dA

∣∣∣∣
(L̄,Ā)

L̄+
∂β(L,A)

∂A

∣∣∣∣
(L̄,Ā)

L̄,

x22 = δ + ktα(Ā) +
∂β(L,A)

∂L

∣∣∣∣
(L̄,Ā)

L̄+ β(L̄, Ā),

y21 = 2kp
dα(Aτ1)

dAτ1

∣∣∣∣
(L̄,Ā)

e−γτ1β(L̄, Ā)L̄− 2
(
1− kpα(Ā)

)
e−γτ1

∂β(Lτ1 , Aτ1)

∂Aτ1

∣∣∣∣
(L̄,Ā)

L̄,

y22 = 2
(
1− kpα(Ā)

)
e−γτ1

(
∂β(Lτ1 , Aτ1)

∂Lτ1

∣∣∣∣
(L̄,Ā)

L̄+ β(L̄, Ā)

)
,

y31 = 2kp
dα(Aτ1)

dAτ1

∣∣∣∣
(L̄,Ā)

e−γτ1β(L̄, Ā)L̄+ 2kpα(Ā))e−γτ1
∂β(Lτ1 , Aτ1)

∂Aτ1

∣∣∣∣
(L̄,Ā)

L̄,

y32 = 2kpα(Ā)e−γτ1
(
∂β(Lτ1 , Aτ1)

∂Lτ1

∣∣∣∣
(L̄,Ā)

L̄+ β(L̄, Ā)

)
,

z31 = kte
−δτ2 dα(Aτ2)

dAτ2

∣∣∣∣
(L̄,Ā)

L̄, and z32 = kte
−δτ2α(Ā),

from which we obtain:

0 = λ3 + λ2
(
µ− x22 − e−λτ1y22 + ϕ

)
+ λ
[
ϕ
(
µ− x22 − e−λτ1y22

)
− µ

(
x22 + e−λτ1y22

)
− κ
(
e−λτ1y31 − e−λτ2z31

)]
− µϕ

(
x22 + e−λτ1y22

)
− κ
[
e−λτ1x21y32 + e−λτ2x21z32 + e−2λτ1y21y32 + e−λ(τ1+τ2)y21z32

−
(
e−λτ1x22y31 + e−λτ2x22z31 + e−2λτ1y22y31 + e−λ(τ1+τ2)y22z31

)]
.
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Supplementary table

Table S1. Parameter value ranges used in the sensitivity analysis.

Parameter Mean 10% 20% Units
ϕ 0.08 ±0.008 ±0.016 day−1

κ 0.017 ±0.0017 ±0.0034 day−1

δ 0.013 ±0.0013 ±0.0026 day−1

kt 0.6 ±0.06 ±0.12 Unitless
kp 0.5 ±0.05 ±0.1 Unitless
γ 0.013 ±0.0013 ±0.0026 day−1

µ 0.006 ±0.0006 ±0.0012 day−1

r 3 ±0.3 ±0.6 day−1

a 1.3 ±0.13 ±0.26 Unitless
β0 1.8 ±0.18 ±0.36 day−1

b 0.2 ±0.02 ±0.04 %
θ 0.9 ±0.09 ±0.18 cells
τ1 1.43 ±0.143 ±0.246 day
τ2 7 ±0.7 ±1.4 day

Supplementary figures

Scheme of LNCaP neuroendocrine trans-differentiation 
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Figure S1. Diagram showing the scheme of LNCaP neuroendocrine transdifferentiation and micrographs
showing the cell morphology changes during the transdifferentiation process [5] (right panel is reprinted
from [5]).
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Figure S2. A plot of β̄(Ā) (blue line) and of β∗(Ā) (red dotted line) using parameters from [5]. The parameter
values satisfy the necessary condition (15) for the existence of tumour-present equilibria, but not the sufficient
one (14).
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(a) Bifurcation diagram with respect to kp (b) Zoom of bifurcation diagram (a) with A 6 0.03
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(c) Bifurcation diagram with respect to a
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(d) Bifurcation diagram with respect to r

Figure S3. Bifurcation diagrams produced using DDE Biftool with parameter values taken from Table 1. Red
indicates an unstable equilibrium, blue an unstable equilibrium with a stable limit cycle, and green is a stable
equilibrium. The pink circle indicates the presence of a saddle-node bifurcation, and the black square indicates
a Hopf bifurcation; (b) shows the unstable tumour-present equilibrium near the tumor free state E0.
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Figure S4. Plots generated by PRCC with the 10% parameter ranges.

(a) PRCC values for L (b) PRCC values for N

Figure S5. PRCC values for L and N with the 20% parameter range.

Nonlinear Anal. Model. Control, 26(5):884–913, 2021

https://doi.org/10.15388/namc.2021.26.24441


910 L. Turner et al.

0 100 200 300 400 500

Time (days)

-1

-0.5

0

0.5

1

P
R

C
C

(a) L PRCC values

0 100 200 300 400 500

Time (days)

-1

-0.5

0

0.5

1

P
R

C
C

(b) N PRCC values

(c) 200 L solutions (d) 200 N solutions

Figure S6. Plots generated by PRCC with the 20% parameter ranges.
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Figure S7. Plots generated by eFAST with the 20% parameter ranges.
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(a) A solutions from different ICs
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(b) L solutions from different ICs
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(c) N solutions from different ICs (d) Phase portrait of all ICs

Figure S8. Plots showing solutions from different initial conditions, where the thick solid line is for
[2, 3, 16], the dashed line is for [1, 2, 3], the dotted line is for [0.6, 0.5, 1.5], the dash-dotted line is for
[0.3, 0.1, 1], and the thin solid line is for [0.001, 0.001, 0.001]. The circle marks the internal steady state
at [1.0911, 2.1175, 5.1344].
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