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Spectral problem for the mean field Hamiltonian
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Abstract. We consider the mean field Hamiltonian̄HV = κ�̄V + ξ(·) in l2(V ), whereV = {x} is a finite
set. Characteristicequations for eigenvaluesand expressions for eigenfunctions ofH̄V are obtained. Using
this result, the spectral representation of the solution of the corresponding ("heat transition") differential
equation is derived.
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1. Introduction

Let V = {x} be a finite set, and letN be the number of elements ofV . The mean field
(Curie-Weiss) model inV is given by the symmetric operator (N -square matrix)H̄V ,
acting on functions (N -dimensional vectors)ψ(·): V → R according to the formula

H̄V ψ(x) = κ�̄V ψ + ξ(x)ψ(x), x ∈ V, (1)

where �̄V ψ = N−1 ∑
x∈V ψ(x), κ is a positive constant and the potentialξ(·) =

{ξ(x): x ∈ V } consists of real scalars. In this paper, we obtain equations for eigen-
values and derive formulas for eigenfunctions of the HamiltonianH̄V (Theorem 1).
Theorem 1 is applied to obtain the spectral representation of the solutionu(t,x) to the
("heat transition") differential equation

{
∂u(t,x)

∂t
= κ

N

∑
y∈V

(
u(t,y) − u(t,x)

) + ξ(x)u(t,x),

u(0, x) = u0(x), t � 0, x ∈ V.
(2)

(Theorem 6). The Feynman-Kac formula foru(t,x) is also discussed (Theorem 5).
The Hamiltonian (1) is a simplified modification of the lattice Schrödinger operator

HV = κ�V + ξ(·) in l2(V ), V ⊂ Z
ν , with the lattice Laplacian�V (cf. [3]).

In the case of independent identically distributed random variablesξ(x), x ∈ V ,
with distribution functionF(s) = P(ξ(x) � s), the spectral problem for the operator
(1) and the asymptotic behavior (asN → ∞ andt → ∞) of the extreme eigenvalues
and the solutionu(t,x) of equation (2) were discussed in [2] (Gaussian distributions),
[4] (exponential distributions) and [1] (continuous distribution functionsF(·)). We
note that, for a continuousF(·), the variablesξ(x), x ∈ V , are all distinct with proba-
bility one. In this paper, we consider the general case of scalarsξ(x), x ∈ V .

In Section 1, we study the eigenvalue problem forH̄V . Section 2 is devoted to the
discussion of representations of the functionu(·, ·).
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2. Spectral problem

We consider the spectral problem

H̄V ψ(·) = λψ(·), λ ∈ R, ψ(·) = {ψ(x): x ∈ V } ∈ R
N, (3)

with ψ(·) �= 0 normed by the condition
∑

x∈V ψ2(x) = 1; here, remember,N = |N |.

THEOREM 1. Let

ξ1,V � ξ2,V � · · · � ξN,V (4)

be the variational series of the scalars ξ(x), x ∈ V , and assume that there are exactly
L � 1 strict inequalities in (4):

ξk1,V > ξk2,V > · · · > ξkL,V ,

where, without loss of generality, k1 = 1. Set ξk0,V = ∞.
Then the Hamiltonian H̄V has N real eigenvalues λ1,V � λ2,V � · · · � λN,V which

are specified as follows:
(i) for each i = 1,2, . . . ,L, there is one eigenvalue λki,V in the (open) interval(

ξki−1,V , ξki,V

)
satisfying the equation

∑
x∈V

1
λ − ξ(x)

= N

κ
(5)

and the corresponding (normed) eigenfunction has the form

ψki
(x) = (λki ,V − ξ(x))−1( ∑

y∈V

(λki ,V − ξ(y))−2)−1/2
, x ∈ V ; (6)

(ii) for each i = 1,2, . . . ,L, if the multiplicity of ξki ,V in (4) is mi � 2 (i.e., there

is the maximal subset {x(i)
1 , x

(i)
2 , . . . , x

(i)
mi

∈ V } such that ξki,V = ξ(x
(i)
1 ) = ξ(x

(i)
2 ) =

· · · = ξ(x
(i)
mi

)), then λ = ξki ,V is an eigenvalue with multiplicity mi − 1 and the set of
(normed) eigenfunctions associated with λ can be chosen as an orthonormal basis of
the (mi −1)-dimensional subspace {ψ(·) ∈ R

N : ψ(x
(i)
1 )+ψ(x

(i)
2 )+ . . .+ψ(x

(i)
mi

) = 0

and ψ(x) = 0 for each x ∈ V \ {x(i)
1 , x

(i)
2 , . . . , x

(i)
mi

}}.

Theorem 1 is proved below.

Remark 2. With notation of part (ii) of Theorem 1, we have thatk1m1 + k2m2 +
· · · + kLmL = N and

⋃L
i=1{x(i)

1 , x
(i)
2 , . . . , x

(i)
mi

} = V .

Remark 3. SinceH̄V is a symmetricN -square matrix, from Theorem 1 we see that
the eigenfunctionsψ1(·),ψ2(·), . . . ,ψN (·) of H̄V form an orthonormal basis of the
N -dimensional vector spaceRN .
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Remark 4. From Theorem 1 we obtain that

λ1,V > ξ1,V � λ2,V � ξ2,V � · · · � ξN−1,V � λN,V � ξN,V .

In addition, if ξi−1,V > ξi,V , thenξi−1,V > λi,V > ξi,V ; meanwhile, ifξi−1,V = ξi,V ;
thenλi,V = ξi,V (i = 2,3, . . . ,N).

Proof of Theorem 1. We rewrite (3) in the following form

(λ − ξ(x))ψ(x)= �̄V ψ, x ∈ V. (7)

To prove part (i) of the theorem, assume thatλ �= ξ(x) for eachx. From (7) we
obtain that ∑

x∈V

ψ(x) = N�̄V ψ = κ�̄V ψ
∑
x∈V

1

λ − ξ(x)
,

i.e.,

N

κ
�̄V ψ = �̄V ψ

∑
x∈V

1
λ − ξ(x)

. (8)

Assume now that
∑

x∈V ψ(x) = 0. Sinceλ �= ξ(x) for eachx, from (7) we see that
ψ(·) = 0, i.e., the eigenfunctionψ(·) associated with eigenvalueλ is necessarily zero.
This contradicts the definition of the eigenfunction, therefore,�̄V ψ �= 0.

Since �̄V ψ �= 0, from (8) we obtain the characteristic equation (5) for eigen-
values. By g(λ) we denote the left-hand side of (5). Note that, for eachi =
1,2, . . . ,L, g(λ) → ±∞ as λ → ξki,V ± 0 and g(λ) → 0 as λ → ±∞. There-
fore, in R \ {ξk1,V , ξk2,V , · · · , ξkL,V } equation (5) has exactlyL eigenvaluesλki ,V ∈(
ξki−1,V , ξki,V

)
, and by (7) the corresponding (normed) eigenfunctionsψki

(·) are de-
fined by (6);i = 1,2, . . . ,L. Thus part (i) is proved.

To prove part (ii), let us consider the equation (7). Fixi = 1,2, . . . ,L and the sub-
set {x(i)

1 , x
(i)
2 , . . . , x

(i)
mi

∈ V } with mi � 2 such thatξki,V = ξ(x
(i)
1 ) = ξ(x

(i)
2 ) = · · · =

ξ(x
(i)
mi

). If λ = ξki ,V , then (7) implies that�̄V ψ = 0. Therefore, from (7) we have
that ψ(x) = 0 for eachx ∈ V \ {x(i)

1 , x
(i)
2 , . . . , x

(i)
mi

}. Thusψ(x
(i)
1 ) + ψ(x

(i)
2 ) + . . . +

ψ(x
(i)
mi

) = 0. Summarizing, we see that ifξki ,V = ξ(x
(i)
1 ) = ξ(x

(i)
2 ) = · · · = ξ(x

(i)
mi

) with
mi � 2, then the eigenspace of the eigenvalueλ = ξki,V is the(mi − 1)-dimensional
subspace{ψ(·) ∈ R

N : ψ(x
(i)
1 ) + ψ(x

(i)
2 ) + . . . + ψ(x

(i)
mi

) = 0 andψ(x) = 0 for each

x ∈ V \ {x(i)
1 , x

(i)
2 , . . . , x

(i)
mi

}}. I.e., part (ii) is proved.

3. Application to evolution systems

Let us consider the evolution system described by the equation (2). Recall that the oper-
ator�̄V ψ − κψ(·) (ψ(·): V → R) is a generator of the random walkx̄· = {x̄t : t � 0}
in V with continuous time which stays at any site during the time, distributed exponen-
tially with parameterκ > 0 and then takes a jump to one of sites inV with probability
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1/N (a mean field random walk, a totally symmetric random walk). In other words,
the local transition probabilities of thehomogeneous random walkx̄· are given by the
formula

P
(
x̄t+�t = y

∣∣x̄t = x
) =

{
κ
N

�t + o(�t), in the case of a jump,
1− κ�t + o(�t), otherwise,

(9)

as �t → 0, for all x ∈ V andy ∈ V . The equation (2) is to describe the evolution
of the system of noninteracting particles inV . Each particle moves according to the
random walkx̄· (diffusion of the system). Additionally, each particle situated atx ∈ V

splits into two particles at the samex with probability max(ξ(x),0)�t + o(�t) and
disappears with probability max(−ξ(x),0)�t +o(�t) during time interval(t; t +�t)

(branching mechanism of the system). Thenu(t,x) is the mean number of particles at
sitex at timet (cf. [6]).

THEOREM 5 (Feynman-Kac formula).Equation (2) has a unique nonnegative so-
lution u(·, ·) represented as an integral over paths:

u(t,x) = Ex

[
exp

{∫ t

0
ξ(x̄s)ds

}
u0(x̄t )

]
, t � 0, x ∈ V,

where the expectation Ex is taken with respect to the mean field random walk x̄· which
starts at x ∈ V .

Proof. Using a strong Markovian property and local transition probabilities (9) of
the random walk̄x·, we have that

u(t + �t,x) = Ex

[
exp

{∫ t+�t

0
ξ(x̄s)ds

}
u0(x̄t+�t)

]

= Ex

[
exp

{∫ �t

0
ξ(x̄s)ds

}
Ex̄�t

(
exp

{∫ t+�t

�t

ξ(x̄s)ds
}
u0(x̄t+�t)

)]

= Ex

[
exp

{∫ �t

0
ξ(x̄s)ds

}
u(t, x̄�t )

]

= e�tξ(x)u(t, x)(1 − κ�t + o(�t)) + eO(�t)
∑
y∈V

u(t,y)
( κ

N
�t + o(�t)

)

= u(t,x) + κ

N

∑
y∈V

(u(t,y) − u(t,x))�t + ξ(x)u(t,x)�t + o(�t)

as�t → 0. We takeu(t,x) to the left-hand side and divide both sides by�t . Passing
to the limit as�t → 0, we obtain the assertion of Theorem 5.

THEOREM 6 (Spectral representation).The solution u(·, ·) of equation (2) is ex-
panded over the eigenvalues λk,V and eigenfunctions ψk(·) (1� k � N ) of the Hamil-
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tonian H̄V = κ�̄V + ξ(·), viz.

u(t,x) =
N∑

k=1

exp{tλk,V − tκ}ψk(x)(ψk,u0)V , t � 0, x ∈ V

(cf. Theorem 1); here (ψk,u0)V = ∑
x∈V ψk(x)u0(x) is the inner product of ψk(·) and

u0(·).

Proof. Since the eigenfunctionsψ1(·),ψ2(·), . . . ,ψN(·) of H̄V form an orthonormal
basis ofRN , the functionu(t, ·) is expanded overψk(·), viz.

u(t, ·) =
N∑

k=1

ak(t)ψk(·)

for eacht � 0. Substituting this into (2) and noting that the eigenfunctionsψk(·) are
linearly independent, we obtain the equations forak(·):

dak(t)

dt
= (λk,V − κ)ak(t), t � 0;

here 1� k � N . This equation has the solutionak(t) = ck exp{tλk,V − tκ}, where
ck = (ψk,u0)V by calculating the inner product ofψk(·) andu0(·) = ∑N

l=1 clψl(·).
Summarizing, we obtain the assertion of the theorem.

For the theory of linear differential equations we refer to, e.g., [5].
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REZIUMĖ

A. Astrauskas. Vidurkinio lauko Hamiltoniano tikrini ↪u reikšmi ↪u uždavinys

Darbe gautos vidurkinio lauko operatoriaus tikrini↪u reikšmi↪u charakteringoji lygtis bei tikrini↪u funkcij ↪u

išraiškos. Šie rezultatai taikomi tiriant atitinkamos tiesin˙es diferencialin˙es lygties sprendinio skleidim↪a

tikrinėmis funkcijomis.


