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Abstract. Spatial time series model for wind speed data is proposed. Based on few similar
papers, first at each location univariate time series model, containing seasonal component
and higher order autoregressive component is fitted. After eliminating time dependence in
time series, empirical semivariogram based on time independent residuals is fitted and spatial
weights for new location are calculated.
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Introduction

In last year‘s there are a lot of different spatial-temporal modeling techniques sug-
gested. Some authors analyse Wind Speed (WS) data. One of the first studies
describing the spatial-temporal structure of WS has been performed by Haslett and
Raftery [3] on Irland‘s winds. The authors base their inference on the model including
deseasonalization, kriging, and fractional ARMA modeling with the main purpose of
evaluating the average power output to be expected in the long term from a wind tur-
bine at a given site. Yan et al. [5] apply a generalized linear model for modeling daily
WS time series in Northwestern Europe. Cripps et al. [2] use a Bayesian hierarchical
model to predict the surface wind field 1 day ahead within Sydney Harbour. Ailliot et
al. [1] propose a Markov switching AR model for modeling the spatial-temporal evo-
lution of WS. Similar results are described in Šaltytė-Benth and Šaltytė [4]. Modeling
technique in this paper is based on the same idea. Data about daily WS data in 20
meteorological stations in Lithuania were analyzed. Lithuanian Hidrometeorological
Service has provided data in pdf format starting from 1967 year. For modeling 18
stations where selected, and in each of them seasonal time series model was fitted.
After eliminating dependence in time, spatial dependence was analyzed. Spatial de-
pendence in Šaltytė-Benth and Šaltytė [4] was based on spatial exponential correlation
function. In this paper spatial connection, based on semivariogram is presented.

1 Time series modeling

We consider spatial-temporal data to be a realization of a random field
{

Z(s; t): s ∈ D ⊂ R2, t ∈ [0;∞)
}

, (1)

where s defines spatial coordinates and t indexes time. As it is usual, we decompose
a spatial-temporal model Z(s; t) into a mean component µ(s; t) modeling the trend of
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the field, and residual component ε(s; t) modeling the variations around the trend in
both space and time. Then, the spatial-temporal random field Z(s; t) may be written
as

Z(s; t) = µ(s; t) + ε(s; t), (2)

where µ(s; t) is a deterministic function of the space and time coordinates and is
defined by

µ(s; t) = S(s; t) +

ps
∑

i=1

φi(s)
(

Z(s; t− 1)− S(s; t− 1)
)

, (3)

here S(s; t) is a seasonal function of space and time, and φi(s) are space-dependent
parameters of an AR(ps) process.

Next, we decompose the residual field into

ε(s; t) =
∑

(s; t)ǫ(s; t), (4)

where σ(s; t) is a non-random function, satisfying the condition σ(s; t) = σ(s; t+365)
for any time t.

We also assume that
{

ǫ(s; t): s ∈ D ⊂ R2, t ∈ [0;∞)
}

, (5)

is a zero-mean stationary Gaussian spatial-temporal random field which is indepen-
dent in time and has a spatial correlation function.

We therefore assume that the cross-correlation in time and space is equal to zero.
We also note that the residuals ε(s; t) are uncorrelated but dependent in time and
correlated in space. Therefore, the model of the spatial-temporal covariance function
for ε(s; t):

C(s, s+ hs; θ) = ρ(hs; θs)
∑

s

(θs)
∑

s+hs

(θt). (6)

Where ρ(hs; θs) is spatial correlation function and
∑

s(θt) is a diagonal variance ma-
trix at the location s ∈ D.

First time series model at a single spatial location independently of the spa-
tial information is considered, and then model spatial correlation function on time-
independent residuals. All parameters from time series analysis into a spatial model
are combined.

Let Zk(t) is a time series in the spatial location sk ∈ D, k = 1, . . . , n; t = 1, . . . , T .
Then

Zk(t) = µk(t) + εk(t), (7)

where µk(t) and εk(t) denote the mean and the residual process at the moment t =
1, . . . , T at the spatial location sk ∈ D, k = 1, . . . , n respectively.

Here

µk(t) = Sk(t) +

pk
∑

i=1

φk
i (s)

(

Zk(t− 1)− Sk(t− 1)
)

, (8)

with φk
i being parameters of a AR(pk) process and

Sk(t) = ak1 +

L
∑

l=1

ak2l+1 cos

(

(2l+ 2)πt

365

)

+ ak2l+1 sin

(

(2l + 2)πt

365

)

(9)

describing the seasonality of WS in spatial location sk ∈ D.
Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 102–107.
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Fig. 1. The ACF and PACF functions after eliminating seasonality in time series.

We assume that the residual process εk(t) is of the following form

εk(t) = σk(t)ǫk(t) (10)

where σk(t) is (possibly) time-dependent standard deviation function, and ǫk(t) is a
zero-mean temporally independent Gaussian random process with standard deviation
equal to one.

The model was estimated on in-sample data from the period 1 January 1977 to
31 December 2006, consisting of 10,950 observations recorded in 18 stations. First
seasonal function (9) for WS data at each station separately was estimated. The
function with only three parameters was sufficient to remove seasonal fluctuations in
data.

In Fig. 1, the ACF and partial ACF (PACF) of residuals obtained after eliminating
seasonal effects from data in Klaipėda are plotted. Seasonal variations were removed
in the data; however, the residuals still exhibited strong autocorrelations. As indicated
by the PACF plot, a higher-order AR process is needed to explain the autocorrelations.

As AR order selection criteria AIC together with Box-Ljung test and histograms
of the residuals were used. We started with a low-order AR process and proceeded
with estimating the processes with an increasing order. The order was bounded to
10. For most of the stations, AR(3) or AR(4) was sufficient to capture the variations
in the residuals. However, in four stations an AR(6) or AR(8) in Nida was needed.
An ARMA process with the combination of AR and MA components did not provide
a better fit.

The residuals after fitting AR became not autocorrelated according to the Box-
Ljung statistics. The autocorrelations of residuals seemed to vary randomly around
zero; however, the ACF of the squared residuals revealed time dependency in the
variance (Fig. 2).

The residuals were first normalized by dividing them by the empirical variance of
residuals.

For model validation, we use 365 out-of-sample WS observations from the year
2007 available in all 18 stations. To validate the temporal model, one-step-ahead pre-
dictions were generated for out-of-sample observations and the prediction errors (PE)
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Fig. 2. ACF of squared residuals after seasonal and AR(p) components were eliminated from data
in Klaipėda.

defined as the differences between the observations and predictions were calculated.
The PEs were normally distributed for all but two stations Even though the normality
assumption was not verified at the 5% significance level in Šiauliai and Utena, the
histograms demonstrated a reasonable symmetry in these stations.

2 Spatial modeling

In spatial connection method for fitted time series parameters semivariogram is used.
Semivariogram is fitted to time independent and normally distributed residuals. As
in each location there was 10950 observations (residuals), before fitting empirical
semivariogram model, residuals where averaged for each day, resulting in 365 days.

Exponential anisotropic semivariogram was fitted:

γ(h; θ) =

{

0, when h = 0,

θ0 + θ1
(

1− exp
(

−
1
θ2

√

t2h2
1 + h2

2

))

, when h > 0
(11)

with parameters θ0 = 0.03; θ1 = 0.002; θ2 = 38472.13 and anisotpropy parameter
t = 1.15.

Time series model for new k-th location is based on spatial weights:

δkj =

1
γ(sij)

∑N

j=1
1

γ(sij)

(12)

there γ(sij) is the semivariogram between i-th and j-th locations.

Liet. matem. rink. Proc. LMS, Ser. A, 53, 2012, 102–107.
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Table 1. Estimated time series parameters for Palanga and Trakų Vokė.

Palanga Traku̧ Vokė

a0 1.268 0.971
a1 0.151 0.721
a2 −0.016 0.437
φ1 0.465 0.485
φ2 −0.053 −0.031
φ3 0.057 0.063
φ4 0.051
δ2 0.198 0.232

Inverse dimension is used, while semivariogram is measure of dissimilarity and in-
verse dimension let us consider that stronger dependence is between nearest locations.

Then parameters for new station can be calculated by:

αk = α · δ′k, (13)

here α = (α1, . . . , αn), when αi is vector of estimated parameters in i-th location,
i.e. αi = (a0i, a1i, a2i, φ1i, φ2i, φ3i, φ4i, φ5i, φ6i, φ7i, φ8i, σ

2
i )

′ and δk = (δ1k, . . . , δ2k) –
weight vector.

In the estimated temporal model, there are 12 parameters in each station. The
AR(3) or AR(4) process was sufficient to capture the autocorrelations in the deseason-
alized data. In four stations, however, a higher-order AR was needed. We therefore
assumed that the AR(8) process was fitted in all stations and set unestimated param-
eters equal to zero.

In Table 1 estimated parameters for two out of sample stations are shown.
By using estimated parameters, spatio-temporal predictions were calculated for

out of sample data (2007 January 1st), predictions were compared to real data in
Palanga and Traku̧ Vokė stations. Prediction in Palanga was 7.9 m/s, while observed
WS is 8.8. Prediction in Traku̧ Vokė was 6.1 m/s, while observed WS for this day
was 6.6 m/s.

Results shows, that spatial-temporal model for WS data fit quite well.
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REZIUMĖ

Erdvinis ARMA modelis vėjų greičių duomenims
L. Paulionienė

Straipsnyje pateikiamas erdvės – laiko modelis, skirtas vėjų greičių, matuotų kasdien nuo 1967 m.
sausio 1 d. analizei. Pirmiausia, kiekviename mieste sudarytas laiko eilutės modelis, kadangi vėjų
greičiams būdingas sezoniškumas, pirmiausia įvertinta sezoninė funkcija, tada AR(p) modelis. Laiko
eilučių liekanos normalizuotos padalinus jas iš standartinio nuokrypio. Tokiu būdu, gavus neprik-
lausomus laike stebėjimus, semivariogramos pagalba, įvertinta erdvinė priklausomybė. Tikrinant
modelio validumą, apskaičiuoti erdviniai svoriai Trakų Vokės bei Palangos stotims, kurios nebuvo
įtrauktos į modeliavimą dėl per mažo stebėjimų skaičiaus bei apskaičiuota vieno žingsnio į priekį
prognozė 2007 metų sausio 1 dienai.

Raktiniai žodžiai: erdvės – laiko, AR, semivariograma, vėjo greitis, erdvinis sujungimas.
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